摘要:
A coil layer, and a magnetic layer covering the coil layer via an insulating layer are provided. The magnetic layer comprises at least two magnetic films in lamination. There is adopted an inductive element including a combination of magnetic films in which, for any two magnetic films forming the magnetic layer, the value of product of multiplication of magnetic permeability and thickness of a magnetic film close to the coil layer is smaller than the value of product of multiplication of magnetic permeability and thickness of a magnetic film distant from the coil layer. This inductive element permits improvement of the superposed DC current characteristic and prevention of a decrease in inductance because magnetic fluxes generated from the coil layer are induced to a magnetic film distant from the coil layer.
摘要:
A radiation detection apparatus comprising a sensor panel and a scintillator panel is provided. The scintillator panel including a substrate, a scintillator disposed on the substrate, and a scintillator protective film that has a first organic protective layer and an inorganic protective layer, and covers the scintillator. The scintillator protective film is located between the sensor panel and the scintillator. The first organic protective layer is located on a scintillator side from the inorganic protective layer. A surface on a sensor panel side of the scintillator is partially in contact with the inorganic protective layer.
摘要:
A radiation imaging apparatus includes a sensor which is placed in an internal space in the chassis and detects radiation. The apparatus includes a positioning mechanism which moves the sensor in the internal space to determine a position where radiation is detected, so as to change an area where radiation imaging is performed by detecting radiation using the sensor.
摘要:
A radiation detection apparatus comprising: a sensor panel including a photoelectric conversion region and an electrically conductive pattern that is electrically connected to the photoelectric conversion region; a scintillator layer disposed over the photoelectric conversion region of the sensor panel; a wiring member including a portion overlapping with the electrically conductive pattern and electrically connected to the electrically conductive pattern and; and a protective film covering the scintillator layer and the portion of the wiring member that overlaps with the electrically conductive pattern is provided. A region of the protective film that covers the wiring member includes a portion that is press-bonded to the sensor panel.
摘要:
A radiation detector includes a sensor panel including a photodetector and peripheral circuitry, the photodetector includes a two-dimensional array of photoelectric conversion elements arranged on a substrate, the peripheral circuitry is electrically connected to the photoelectric conversion elements and is disposed on the periphery of the photodetector; a scintillator layer is disposed on the photodetector of the sensor panel, the scintillator layer converts radiation into light that is detectable by the photoelectric conversion elements; a scintillator protection member covers the scintillator layer; and a sealing resin seals the scintillator layer, the sealing resin is disposed between the sensor panel and the scintillator protection member on the periphery of the scintillator layer; the sealing resin is disposed on top of the peripheral circuitry; and particles containing a radiation-absorbing material are dispersed in the sealing resin.
摘要:
The application provides a magnetic sensor which can suppress an irregularity of a central potential due to a change in a temperature, decrease size of the sensor, and lower the manufacturing cost of the sensor. A magneto-resistive element and fixed resister are provided on an element base and have the same configuration elements. A second magnetic layer and non-magnetic layer in the fixed resistor are reversely laminated on each other in a manner different from the magneto-resistive element, and the second magnetic layer is formed in contact with the first magnetic layer, thereby fixing the magnetization directions of the first magnetic layer and the second magnetic layer in the same direction. In this manner, the irregularity of the temperature coefficient between the magneto-resistive element and the fixed resistor is suppressed, and the irregularity of the central potential due to the change in the temperature is suppressed.
摘要:
Disclosed is a magnetic film forming method of forming a magnetic film on a substrate by preparing a material A formed of oxide of an element T of at least one kind of Fe, Co, and Ni and a material B formed of oxide of an element M of at least one kind selected from Ti, Zr, Hf, Nb, Ta, Cr, Mo, Si, P, C, W, B, Al, Ga, Ge, and rare earth elements and making a target by sintering the powders of the material A and the material B or preparing the material A formed of oxide of the element T of at least one kind of Fe, Co, and Ni, the material B formed of oxide of the element M of at least one kind selected from Ti, Zr, Hf, Nb, Ta, Cr, Mo, Si, P, C, W, B, Al, Ga, Ge, and rare earth elements and a material C formed of an element S of at least one kind of Fe, Co, and Ni and making a target by sintering the powders of the material A, the material B and the material C; disposing the target in a film forming apparatus so that the target confronts a substrate; and forming the magnetic film on the substrate.
摘要:
In a magnetic film forming method, a plurality of chips formed of Fe.sub.3 O.sub.4 and a plurality of chips formed of HfO.sub.2 are disposed on a target formed of Fe. The composition ratio of a Fe--Hf--O film can be set within a proper range by adjusting the numbers of the up said two kind of chips.
摘要翻译:在磁性膜形成方法中,由Fe 3 O 4形成的多个芯片和由HfO 2形成的多个芯片设置在由Fe形成的靶上。 通过调整上述两种芯片的数量,可以将Fe-Hf-O膜的组成比设定在适当的范围内。
摘要:
A radiation detection apparatus comprising a sensor panel and a scintillator panel is provided. The scintillator panel including a substrate, a scintillator disposed on the substrate, and a scintillator protective film that has a first organic protective layer and an inorganic protective layer, and covers the scintillator. The scintillator protective film is located between the sensor panel and the scintillator. The first organic protective layer is located on a scintillator side from the inorganic protective layer. A surface on a sensor panel side of the scintillator is partially in contact with the inorganic protective layer.
摘要:
The invention relates to a polyethylene resin having excellent slow crack growth property, in particular a resin having excellent durability in a pipe application, which has a specific (a) high-load melt flowrate (HLMFR; HLa), a specific (b) density (Da), and a specific (c) α-olefin content (Ca) and in which (d) a breaking time (T) measured by notched Lander ESCR, the HLa, and the Ca satisfy log T≧−2.9×log HLa+5.1×log Ca+6.8. It further relates to a process for producing the resin and to a pipe and a joint each comprising the resin.