Abstract:
An orthogonal frequency division multiple access-passive optical network including a plurality of optical network units each configured to generate orthogonal frequency division multiplexed signals, which are allocated thereto, based on a central frequency for frequency division multiplexing that is allocated in advance, and to use the generated signals in upstream transmission.
Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using aDWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.
Abstract:
There are provided a method of allocating upstream bandwidth resources and a method of transmitting upstream data in an orthogonal frequency division multiple access-open optical subscriber network. The method of allocating an upstream bandwidth resource according to an embodiment of the invention includes receiving queue status information from each optical network unit (ONU), and allocating an upstream bandwidth by providing to each ONU a 2-D upstream bandwidth map on a subcarrier-time resource through a frame synchronized at constant cycles, based on the queue status information received from each ONU.
Abstract:
A controlling method for mitigating a rogue behavior of an Optical Network Unit (ONU) having a wavelength-tunable function in a hybrid Passive Optical Network (PON) system. The controlling method includes determining whether a first wavelength for an upstream signal received from the ONU strays away from an allowable range for a second wavelength assigned to the ONU, and, in response to a determination that the first wavelength strays away from the allowable range for the second wavelength, transmitting an upstream wavelength adjustment request message to the ONU to adjust a wavelength for the upstream signal. At this point, a determination on whether the first wavelength strays away from the allowable range for the second wavelength is made by calculating wavelength drift of the first wavelength and determining whether the calculated wavelength drift is greater than a drift threshold.
Abstract:
Provided is a method of selecting a wavelength of an optical network unit including selecting a pre-loaded default wavelength as an available wavelength candidate or the wavelength that has been changed when a preset wavelength changing condition is satisfied as the available wavelength candidate, acquiring frame synchronization for a downstream signal having the same wavelength as the selected available wavelength candidate, and transmitting a registration request message to an optical line terminal (OLT) from which the downstream signal has been transmitted when the frame synchronization is acquired, assigning the available wavelength candidate to an available wavelength used for communication with the OLT and registering the terminal in the OLT when a registration allowance message is received from the OLT.
Abstract:
A wavelength tuning time measurement apparatus and method for a multi-wavelength passive optical network (MW PON) are provided. The wavelength tuning time measurement apparatus for measuring a wavelength tuning time of a wavelength-variable light source included in the MW PON system includes an optical filter configured to pass only light of a certain wavelength bandwidth and a photo detector configured to sense light passing through the optical filter. The wavelength tuning time is a time taken from a time when a wavelength change signal is transferred to the wavelength-variable light source, to a time when light starts to be successively sensed by the photo detector.