Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using aDWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.
Abstract:
The TWDM-PON system includes a service provider equipment configured to comprise a plurality of Optical Line Terminals (OLTs), wherein each OLT provides a service in a TWDM scheme; a subscriber equipment configured to comprise a plurality of an Optical Network Units (ONUs), wherein each of the plurality of ONUs utilizes a service provided from one of the plurality of OLTs using an optical signal of an arbitrary wavelength; an Optical Division Network (ODN) configured to transmit multi-wavelength downstream optical signals and multi-wavelength upstream optical signals; and a Reach Extender (RE) configured to comprise at least one of a downstream optical amplifier and an upstream optical amplifier, wherein the downstream optical amplifier is configured to amplify the multi-wavelength optical signals simultaneously, and the upstream optical amplifier is configured to amplify the multi-wavelength optical signals simultaneously.
Abstract:
An optical layer monitoring apparatus and method thereof are provided. According to an embodiment of the present invention, an optical layer monitoring apparatus including an optical time domain reflectometer (OTDR) function so as to monitor an optical path of a passive optical network (PON), and a method for improving accuracy of measured monitoring results using the optical layer monitoring apparatus are provided. Therefore, it is possible to enable a user to continuously detect distortion or attenuation along the optical path, and to quickly recover from the distortion or attenuation along the optical path when distortion or attenuation is detected.
Abstract:
Provided is a method of establishing a link between service provider equipment and subscriber equipment in a multi-wavelength passive optical network system. The method of establishing a link includes acquiring information about a wavelength plan of allocated wavelengths in the MW PON system; transmitting a first signal wavelength initialization request signal on a first upstream wavelength from physical layer to the service provider equipment; waiting for a response from the service provider equipment for a predetermined time interval after transmitting the first signal wavelength initialization request signal; and in response to failing to receive a response to the first signal-wavelength initialization request signal within the predetermined time interval, transmitting a second signal wavelength initialization request signal on a second upstream wavelength to the service provider equipment after the waiting.
Abstract:
A Time Wavelength Division Multiplexing-Passive Optical Network (TWDM-PON) system and a communication link method thereof are provided. The communication link method is a method whereby an Optical Network Unit (ONU) which has established communication link to one Optical Line Terminal (OLT) establishes communication link to a different OLT. The ONU receives a wavelength change instruction to change a wavelength thereof to an operating wavelength assigned to the different OLT, and change the wavelength in response to the wavelength change instruction to synchronize to a downstream signal of the operating signal. In addition, the ONU receives an upstream discovery grant signal from the different OLT, and transmits an acknowledgement message to notify the receipt of the upstream discovery grant signal, so that the ONU establishes communication link to the different OLT.
Abstract:
A multi-channel transmitter optical sub-assembly (TOSA) is provided. The multi-channel TOSA includes a stem including a sub-mount, a plurality of light sources mounted on the sub-mount, a common ground pad disposed at the sub-mount and connected to ground electrodes of the light sources in common, a common lead pin installed at the stem, and connected to the common ground pad, and a thermistor mounted on the sub-mount along with the light sources.
Abstract:
A controlling method for mitigating a rogue behavior of an Optical Network Unit (ONU) having a wavelength-tunable function in a hybrid Passive Optical Network (PON) system. The controlling method includes determining whether a first wavelength for an upstream signal received from the ONU strays away from an allowable range for a second wavelength assigned to the ONU, and, in response to a determination that the first wavelength strays away from the allowable range for the second wavelength, transmitting an upstream wavelength adjustment request message to the ONU to adjust a wavelength for the upstream signal. At this point, a determination on whether the first wavelength strays away from the allowable range for the second wavelength is made by calculating wavelength drift of the first wavelength and determining whether the calculated wavelength drift is greater than a drift threshold.
Abstract:
Provided is a method of selecting a wavelength of an optical network unit including selecting a pre-loaded default wavelength as an available wavelength candidate or the wavelength that has been changed when a preset wavelength changing condition is satisfied as the available wavelength candidate, acquiring frame synchronization for a downstream signal having the same wavelength as the selected available wavelength candidate, and transmitting a registration request message to an optical line terminal (OLT) from which the downstream signal has been transmitted when the frame synchronization is acquired, assigning the available wavelength candidate to an available wavelength used for communication with the OLT and registering the terminal in the OLT when a registration allowance message is received from the OLT.
Abstract:
A wavelength tuning time measurement apparatus and method for a multi-wavelength passive optical network (MW PON) are provided. The wavelength tuning time measurement apparatus for measuring a wavelength tuning time of a wavelength-variable light source included in the MW PON system includes an optical filter configured to pass only light of a certain wavelength bandwidth and a photo detector configured to sense light passing through the optical filter. The wavelength tuning time is a time taken from a time when a wavelength change signal is transferred to the wavelength-variable light source, to a time when light starts to be successively sensed by the photo detector.