Abstract:
Provided is a method for manufacturing a semiconductor package, the method including providing a semiconductor chip on a substrate, providing a bonding member between the substrate and the semiconductor chip, and bonding the semiconductor chip on the substrate by irradiating of a laser on the substrate. Here, the bonding member may include a thermosetting resin, a curing agent, and a laser absorbing agent.
Abstract:
Provided is a bonding apparatus. The bonding apparatus includes a stage configured to accommodate a substrate, a laser light source configured to provide laser light to devices on the substrate, and a bonding plate provided between the laser light source and the stage and configured to provide the devices on the substrate. The bonding plate includes a transparent substrate; a transparent layer below the transparent substrate; an device adhesion layer below the transparent layer and a reflective pattern provided above or below the transparent substrate and the transparent layer.
Abstract:
Provided is a method for transferring and bonding devices. The method includes applying an adhesive layer to a carrier, arranging a plurality of devices, attaching the arranged devices to the carrier, applying a polymer film to a substrate, aligning the carrier to which the plurality of devices are attached with the substrate, bonding the plurality of devices to the substrate by radiating laser, and releasing the carrier from the substrate to which the plurality of devices are bonded.
Abstract:
Provided is a method of fabricating a solder particle including adding a first magnetic bar in a first container including a mixture containing first solder particles formed through a mixing process, disposing the first container in a second container including a second magnetic bar, operating the first magnetic bar and the second magnetic bar, and applying heat to the first container to melt the first solder particles.
Abstract:
Provided is an organic-inorganic compound including a first structural body and a curable reactive group, wherein the first structural body may have a structure in which silane and isohexide are chemically bonded through a silyl ether bond.
Abstract:
Provided are a microwave heating device and a method for manufacturing a semiconductor packaging using the same. The microwave heating device includes a microwave generator configured to generate microwaves, a microwave absorbing layer configured to receive the microwaves so as to be heated, a temperature measuring layer provided on the microwave absorbing layer, a sensor configured to detect a temperature of the temperature measuring layer, and a controller connected to the sensor and the microwave generator to determine the temperature of the microwave absorbing layer using a detection signal of the sensor, the controller being configured to control a voltage of the microwaves provided from the microwave generator based on the temperature of the microwave absorbing layer.
Abstract:
Provided are a laser control structure and a laser bonding method using the same, and more particularly, a laser bonding method including: forming bonding portions on a substrate; providing a bonding object onto the bonding portions; providing a laser control structure onto the bonding object or the substrate; irradiating a laser toward the bonding object and the bonding portions; controlling quantity of laser light absorbed through the laser control structure; using the controlled quantity of laser light to heat the bonding portions and the bonding object to a bonding temperature; and bonding the bonding portions and the bonding object, wherein the laser control structure includes: a first substrate including a first region and a second region; a first thin film laminate on the first region; and a second thin film laminate on the second region, wherein: the first thin film laminate includes at least one first thin film layer and at least one second thin film layer, which are laminated on the first region; the second thin film laminate includes at least one third thin film layer and at least one fourth thin film layer, which are laminated on the second region; reflectance or absorptivity of the first thin film laminate with respect to laser is different from reflectance or absorptivity of the second thin film laminate; and the bonding temperature varies according to the quantity of laser light.
Abstract:
The present disclosure relates to a transfer and bonding method using a laser. As a plurality of devices or packages are simultaneously transferred onto a substrate from a transfer tape by irradiating a top surface of the transfer tape with a first laser, and the plurality of transferred devices or packages are simultaneously bonded to pads of a substrate by irradiating a top surface of the devices or packages with a second laser, a speed of a transfer and bonding process may be extremely maximized.
Abstract:
The inventive concept relates to a filling composition for a semiconductor package. The filling composition for a semiconductor package may include a resin, a curing agent, and an insulating filler. The insulating filler may include a first filler body part, a second filler body part, a polymer chain coupled to the first filler body part and the second filler body part, and supramolecules coupled to the polymer chain.
Abstract:
Provided are a transceiver module and a communication apparatus including the same. The transceiver module includes a lower substrate, a thermoelectric device on the lower substrate, and an upper substrate which is disposed on the thermoelectric device and on which high frequency devices cooled by the thermoelectric device are mounted. The upper substrate includes a ceramic printed circuit board (PCB).