Abstract:
Provided is a current controlling device for controlling an electric field emission current in connection with an electric field emission device which emits electrons in response to an applied voltage, the device including: a first current controlling transistor forming a current path in response to a first gate voltage; a second current controlling transistor connected between the field emission device and the first current controlling transistor and forming a current path in response to a second gate voltage; and a control logic controlling the first and second gate voltages, wherein the control logic controls a upper limit of the field emission current by using the first gate voltage.
Abstract:
An X-ray tube is provided. The X-ray tube includes a first housing including an X-ray window formed therein, a second housing being rotatable about a rotational shaft installed within the first housing, an anode installed on the rotational shaft within the second housing and positioned in one side of the rotational shaft in an extending direction of the rotational shaft, an emitter installed on the rotational shaft within the second housing, positioned in the other side of the rotational shaft in the extending direction of the rotational shaft, and emitting electron beams, a lens unit installed between the anode and the emitter and focusing the electron beams emitted from the emitter to the anode, and an electron beam deflection unit installed on the rotational shaft to deflect an angle of electron beams moving toward the anode from the lens unit.
Abstract:
Provided is an X-ray tube which includes a first electrode, a second electrode spaced apart from the first electrode, a target disposed in a lower portion of the second electrode, an emitter on the first electrode, a third electrode which is positioned between the first electrode and the second electrode and includes an opening at a position perpendicularly corresponding to the emitter, and a spacer provided on the third electrode and surrounding the second electrode. The spacer includes a first section located adjacent to the third electrode and a second section disposed on the first section. The spacer includes a ceramic insulator and conductive dopants dispersed within the ceramic insulator. A concentration of the conductive dopants in the first section of the spacer is greater than a concentration of the conductive dopants in the second section. The third electrode is in contact with the first section of the spacer.
Abstract:
Provided is a field emission device including a cathode electrode and an anode electrode, which are spaced apart from each other, an emitter disposed on the cathode electrode, a gate electrode disposed between the cathode electrode and the anode electrode and including a gate opening that overlaps the emitter, and a plurality of alignment electrodes disposed between the gate electrode and the cathode electrode. Here, the alignment electrodes surround a side surface of the emitter.
Abstract:
The inventive concept relates to an apparatus for aging a field emission device configured to emitting electrons based on an electric field between a first electrode and a second electrode, and an aging method thereof. The apparatus according to an embodiment of an inventive concept includes a voltage generator and a current controller. The voltage generator increases the voltage applied to the first electrode to the target voltage level during the first time. The current controller increases the field emission current for the second time to the target current level and increases the pulse width of the field emission current for the third time to the target pulse width. According to the inventive concept, the performance of a large field emission device may be improved with high efficiency and low cost.
Abstract:
Disclosed is a field emission apparatus. The apparatus comprises a cathode electrode and an anode electrode spaced apart from each other, an emitter on the cathode electrode, a gate electrode between the cathode and anode electrodes and including at least one gate aperture overlapping the emitter, and an electron transmissive sheet on the gate electrode and including a plurality of fine openings overlapping the gate aperture.
Abstract:
Disclosed is an X-ray source, including: a cathode; an anode positioned on the cathode so as to face the cathode; emitters formed on the cathode; a gate electrode positioned between the cathode and the anode and including openings at positions corresponding to those of the emitters; an insulating spacer formed between the gate and the anode; and a coating layer formed on an internal wall of the insulating spacer, and including a material having a lower secondary electron emission coefficient than that of the insulating spacer.
Abstract:
Provided is a method for manufacturing an electric field emission device. The method for manufacturing the electric field emission device includes winding a carbon nanotube yarn around outer circumferential surfaces of a metal plate in a first direction, pressing both side surfaces of the metal plate through a pair of metal structures, wherein a top surface of the metal plate is exposed from the metal structures, and an area of the top surface of the metal plate is less than that of each of both the side surfaces of the metal plate, and cutting the carbon nanotube yarn at an edge portion of the top surface of the metal plate in the first direction to form a plurality of emitters.
Abstract:
The present disclosure relates to an X-ray tube, and more particularly, to an X-ray tube having a simple structure from which an element necessary for focusing an electron beam, such as a magnetic lens, and having generating an X-ray having a focal spot of a nanometer-scale. The present disclosure includes: a electron beam generation unit emitting an electron beam; a limiting electrode unit limiting the electron beam emitted from the electron beam generation unit; and a target unit including a target material emitting an X-ray when the limited electron beam collides with the target material, wherein the limiting electrode includes of an electron beam limiting electrode allowing a portion of the emitted electron beam to pass therethrough and to be delivered to the target unit.
Abstract:
Provided is an electron emission source including a substrate, a fixed structure provided on the substrate, and an electron emission yarn provided between the substrate and the fixed structure. The fixed structure includes a first portion having a first width and a second portion having a second width greater than the first width, and the electron emission yarn extends on a first sidewall of the first portion of the fixed structure from between the fixed structure and the substrate.