摘要:
A method of fabricating a densified nanoparticle thin film with a set of occluded pores in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method further includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 5 minutes and about 60 minutes, wherein the solvent is substantially removed, and a porous compact with a set of pores is formed. The method also includes heating the porous compact to a second temperature between about 300° C. and about 900° C., and for a second time period of between about 5 minutes and about 15 minutes, and flowing a precursor gas into the chamber at a partial pressure between about 0.1 Torr and about 50 Torr, wherein the precursor gas substantially fills the set of pores, and wherein the densified nanoparticle film with the set of occluded pores is formed.
摘要:
A method of forming a densified nanoparticle thin film is disclosed. The method includes positioning a substrate in a first chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed; and positioning the substrate in a second chamber, the second chamber having a pressure of between about 1×10−7 Torr and about 1×10−4 Torr. The method further includes depositing on the porous compact a dielectric material; wherein the densified nanoparticle thin film is formed.
摘要:
A method of forming a densified nanoparticle thin film is disclosed. The method includes positioning a substrate in a first chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed; and positioning the substrate in a second chamber, the second chamber having a pressure of between about 1×10−7 Torr and about 1×10−4 Torr. The method further includes depositing on the porous compact a dielectric material; wherein the densified nanoparticle thin film is formed.
摘要:
A method of forming a densified nanoparticle thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes exposing the porous compact to an HF vapor for a second time period of between about 2 minutes and about 20 minutes, and heating the porous compact for a second temperature of between about 25° C. and about 60° C.; and heating the porous compact to a third temperature between about 100° C. and about 1000° C., and for a third time period of between about 5 minutes and about 10 hours; wherein the densified nanoparticle thin film is formed.
摘要:
A method of forming a densified nanoparticle thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes exposing the porous compact to an HF vapor for a second time period of between about 2 minutes and about 20 minutes, and heating the porous compact for a second temperature of between about 25° C. and about 60° C.; and heating the porous compact to a third temperature between about 100° C. and about 1000° C., and for a third time period of between about 5 minutes and about 10 hours; wherein the densified nanoparticle thin film is formed.
摘要:
Native Group IV semiconductor thin films formed from coating substrates using formulations of Group IV nanoparticles are described. Such native Group IV semiconductor thin films leverage the vast historical knowledge of Group IV semiconductor materials and at the same time exploit the advantages of Group IV semiconductor nanoparticles for producing novel thin films which may be readily integrated into a number of devices.
摘要:
Native Group IV semiconductor thin films formed from coating substrates using formulations of Group IV nanoparticles are described. Such native Group IV semiconductor thin films leverage the vast historical knowledge of Group IV semiconductor materials and at the same time exploit the advantages of Group IV semiconductor nanoparticles for producing novel thin films which may be readily integrated into a number of devices.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a substrate; an insulating layer formed above the substrate; and a first electrode formed above the insulating layer. The device also includes a first doped Group IV nanoparticle thin film deposited on the first electrode; and a second doped Group IV nanoparticle thin film deposited on the first doped Group IV nanoparticle thin film. The device further includes a third doped Group IV nanoparticle thin film deposited on the second doped Group IV nanoparticle thin film; a fourth doped Group IV nanoparticle thin film deposited on the third doped Group IV nanoparticle thin film; and, a second electrode formed on the fourth doped Group IV nanoparticle thin film. Wherein, when solar radiation is applied to the fourth doped Group IV nanoparticle thin film, an electrical current is produced.
摘要:
A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
摘要:
A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.