Abstract:
Disclosed is a solar cell including a semiconductor substrate having a first surface and a second surface that is opposite the first surface, each of which includes a first edge area, a second edge area, and a cell area located between the first and second edge areas, a first passivation layer formed on the cell area of the first surface of the semiconductor substrate, a first conductive semiconductor layer disposed on the first passivation layer, and a first electrode disposed on the first conductive semiconductor layer. The first edge area of the first surface of the semiconductor substrate is exposed.
Abstract:
A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.
Abstract:
A nanocomposite material that is both transparent and electrically conductive is provided. The nanocomposite comprises a nanoporous matrix, preferably formed from nanoparticles, that is internally coated with a transparent conductive material to define an internal conductive path within the nanocomposite. The nanocomposite is substantially transparent over a defined spectral range that preferably includes at least a portion of the visible spectrum, and preferably comprises pores with a mean diameter of less than approximately 25 nm. A bilayer may be formed by depositing a layer of a transparent conductive material on top of a nanocomposite layer, or by depositing a second layer of a nanocomposite having different optical properties. The nanocomposites formed using a combination of sequential and/or concurrent deposition techniques are correspondingly discrete and/or continuously varying structures. Multilayer structures, such as photonic crystal reflectors, may be formed by depositing multiple bilayers, and integrated into devices such as tandem solar cells.
Abstract:
Disclosed is a method for manufacturing a thin-film solar cell using plasma between a couple of parallel electrodes. In the method, a base member is placed in a chamber between a first electrode and a second electrode facing each other. A hydrogen gas is heated, and thus heated hydrogen gas and a silicon-based gas are introduced into a space between the first electrode and the second electrode. A ratio of a flow rate of the heated hydrogen gas to that of the silicon-based gas is at least 25 and no more than 58. A plasma is generated between the first electrode and the second electrode by applying high-frequency power to the second electrode while a pressure in the chamber is 1000 Pa or higher, and an optically active layer containing crystalline silicon is deposited on the base material.
Abstract:
Disclosed is a photovoltaic device. The photovoltaic device includes: a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.
Abstract:
A thin film solar cell includes a substrate, a first electrode and a second electrode positioned on one surface of the substrate, and a photoelectric conversion unit positioned between the first electrode and the second electrode. The photoelectric conversion unit includes a plurality of photoelectric conversion layers each including a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer. At least one of the p-type semiconductor layers of the plurality of photoelectric conversion layers contains microcrystalline silicon (mc-Si) and amorphous silicon oxide (a-SiOx).
Abstract:
Provided is a photoelectric conversion device fabrication method in which current leakage from an intermediate contact layer via an intermediate-contact-layer separating groove is prevented as much as possible. Included are a step of film-forming a top layer having amorphous silicon as a main component; a step of film-forming, on the top layer, an intermediate contact layer electrically and optically connected thereto; a step of separating the intermediate contact layer by removing the intermediate contact layer by irradiating it with a pulsed laser, forming an intermediate-contact-layer separating groove that reaches the top layer; and a step of film-forming, on the intermediate contact layer and inside the intermediate-contact-layer separating groove, a bottom layer electrically and optically connected thereto and having microcrystalline silicon as a main component. A pulsed laser having a pulse width of 10 ps to 750 ps, inclusive, is used as the pulsed laser for separating the intermediate contact layer.
Abstract:
Disclosed is a photovoltaic device that comprises: a first electrode including a transparent conductive oxide layer; a first unit cell being placed on the first electrode; a second unit cell being placed on the first unit cell; and a second electrode being placed on the second unit cell, wherein the intrinsic semiconductor layer of the first unit cell includes hydrogenated amorphous silicon or hydrogenated amorphous silicon based material, wherein an intrinsic semiconductor layer of the second unit cell includes hydrogenated microcrystalline silicon or hydrogenated microcrystalline silicon based material, and wherein a ratio of a root mean square roughness to an average pitch of a texturing structure formed on the surface of the first electrode is equal to or more than 0.05 and equal to or less than 0.13.
Abstract:
An inorganic nanocrystal solar cell comprising a substrate, a layer of metal, a layer of CdTe, a layer of CdSe, and a layer of transparent conductor. An inorganic nanocrystal solar cell comprising a transparent conductive substrate, a layer of CdSe, a layer of CdTe, and a Au contact. A method of spray deposition for inorganic nanocrystal solar cells comprising subjecting a first solution of CdTe or CdSe nanocrystals to ligand exchange with a small coordinating molecule, diluting the first solution in solvent to form a second solution, applying the second solution to a substrate, drying the substrate, dipping the substrate in a solution in MeOH of a compound that promotes sintering, washing the substrate with iPrOH, drying the substrate with N2, and heating and forming a film on the substrate.
Abstract:
Provided is a thin film silicon solar cell including a first optical absorption layer, a first transparent electrode disposed in a surface of the first optical absorption layer, a first transparent substrate covering the first transparent electrode, a second transparent electrode disposed another surface of the first optical absorption layer, and a second transparent substrate covering the second transparent electrode, wherein the first optical absorption layer has a thickness of about 500 Å to about 2000 Å.