摘要:
A digital image processing apparatus is disclosed. The apparatus increases input pixel intensity values in an edge region of input image data to form output pixel intensity values. The input pixel intensity values are varyingly increased depending on a location of the input pixel values within the edge region. The output values are printed on an edge region of a print sheet. A printer prints the output intensity pixel values on a print sheet. The invention allows printing of digital images to the edge of a print sheet without accumulating a great deal of toner at the edge of the sheet or overburdening a toner cleaning device.
摘要:
A system and method which enables the location and orientation of an image to be determined without introducing scanning artifacts into the rendered image. The system utilizes a separate set of sensors on a scanning bar that are sensitive to a wavelength of light outside the range of wavelengths of the typical sensors found on the scanning bar, such as red, green, or blue. Moreover, the system includes a light source which is capable of emitting the wavelength of light that is outside this range of wavelength of light. Thus, whenever the additional set of sensors detect light, the system would determine that the light was due to a scanning artifact, such as a hole, rip, or dog ear in the original document being scanned. Furthermore, the system would include a process which measures the variations of the image signal in the fastscan and slowscan directions, as well as, the gray level of the video signal from these various measurements, the system would develop a cost value as to the certainty as whether the signal represents a scanning artifact. In such a system, the backing would be embedded with a pattern which would have a predetermined variation in a fastscan direction but have little or no variation in a slowscan direction.
摘要:
A system and method which enables the location and orientation of an image to be determined without introducing scanning artifacts into the rendered image. The system utilizes a separate set of sensors on a scanning bar that are sensitive to a wavelength of light outside the range of wavelengths of the typical sensors found on the scanning bar, such as red, green, or blue. Moreover, the system includes a light source which is capable of emitting the wavelength of light that is outside this range of wavelength of light. Thus, whenever the additional set of sensors detect light, the system would determine that the light was due to a scanning artifact, such as a hole, rip, or dog ear in the original document being scanned. Furthermore, the system would include a process which measures the variations of the image signal in the fastscan and slowscan directions, as well as, the gray level of the video signal from these various measurements, the system would develop a cost value as to the certainty as whether the signal represents a scanning artifact. In such a system, the backing would be embedded with a pattern which would have a predetermined variation in a fastscan direction but have little or no variation in a slowscan direction.
摘要:
A method for scanning a document includes: acquiring scanned image data from a first region of the document; determining an initial estimate of a document attribute using pixels in the first region; acquiring scanned image data from a second region of the document; processing pixels in the second region in accordance with the initial estimate; determining a second estimate of the document attribute using selected pixels in the second region; determining if the initial estimate is valid and if not, processing pixels within the image in accordance with the second estimate.
摘要:
During the operation of a document processing system machine and job data are collected from a document processing system. Optionally, machine information, both for the specific machine and population based data are acquired from a database or server. Having accumulated the job data and machine data, the diagnostic inference engine performs an analysis to determine the initial diagnosis of the document processing system. After obtaining the initial diagnosis, the system determines the test patterns to be printed and the image quality tests to be performed. The system then prints test patterns, and scans the patterns to determine image quality parameters and/or to automatically identify image defects. Optionally, image defect information may also be provided by the customer or the service engineer via a user interface. Next, a diagnostic inference engine uses the results of the image quality analysis to refine the initial diagnosis. Then, the diagnostic results are output, stored, and optionally displayed to, for example a customer or a customer service engineer. Based on the diagnostic results, and if problems are found, the machine enters a repair sequence. In particular, the machine can request either a customer or a customer service engineer repair action, or, alternatively, enter an auto-correction or an auto-calibration mode to repair itself. Upon completion of one or more, or any combination, of these repair actions, the machine verifies its operation and again checks to ensure the repairs have been completed successfully.