Abstract:
An integrated system and method to acquire the health state of a structure identifying the presence of damage, and to self-repair the damage in the considered structure. A sensor network installed in the structure is interrogated by a dedicated hardware for damage detection. In case of damage is detected by the sensor network in the structure, the sensor network is triggered and generates harmonic excitation in the structure. Due to the excitation, the natural frequency of vascular microtubes and/or capsules presented in the structure is reached, promoting their disruption. The vascular microtubes and/or capsules disruption along the damage releases the healing compound, repairing the damaged portion of the structure.
Abstract:
A method to acquire the structural health state of an aircraft mechanical component performs measurements at each frequency point of interest by using a network of transducers and working each one simultaneously as actuator and sensor. Each transducer is individually excited by a sinusoidal, constant frequency and arbitrary amplitude, voltage waveform for each arbitrary frequency point used to interrogate the structure. A dedicated hardware executes an analogical (analog) quantization to measure electrical current and average electrical power consumed by each transducer. With these two variables, the electromechanical signature of the structure is obtained at different areas of the monitored structure.
Abstract:
A system and method for damage detection and for evaluating the real operation conditions for structural platforms using structural health monitoring is integrated to a system and method that permits for the platform to provide a flexible geometric control considering a self-adapting morphing which is capable of providing better operating structural platform performance.
Abstract:
An integrated system for assessing the condition and management of a structural platform or a plurality of platforms includes a Structural Health Monitoring System (SHM), an Operational loads Monitoring System (OLM), a static, fatigue and damage tolerance analysis (FDTA) subsystem, a databank storing a maintenance plan, and a subsystem configured for damage and repair management (iSRM). The SHM may include a plurality of transducers, including a plurality of pairs of actuators and sensors; a generator device configured to excite at least one of said sensors to produce ultrasonic guided waves; and a signal processor device configured to receive the signals reflected from damage identification. The Operational loads Monitoring System (OLM) may comprise parametric models using flight parameter data. The static, fatigue and damage tolerance analysis (FDTA) subsystem may be configured to use parametric models using Finite element Models results and abacus. The databank storing a maintenance plan may comprise information relating to inspection periods and tasks of the structural platform or a plurality of platforms.
Abstract:
Structural health monitoring (“SHM”) methods, apparatus and techniques involve building deformation fields maps (amplitude and phase related to excitation) on the surface of the structural component under monitoring based on a network of strain measurements by fiber Bragg grating sensors.
Abstract:
A method to acquire the structural health state of an aircraft mechanical component performs measurements at each frequency point of interest by using a network of transducers and working each one simultaneously as actuator and sensor. Each transducer is individually excited by a sinusoidal, constant frequency and arbitrary amplitude, voltage waveform for each arbitrary frequency point used to interrogate the structure. A dedicated hardware executes an analogical (analog) quantization to measure electrical current and average electrical power consumed by each transducer. With these two variables, the electromechanical signature of the structure is obtained at different areas of the monitored structure.