Abstract:
Scroll compressor designs are provided to minimize vibration, sound, and noise transmission. The scroll compressor has a bearing housing, and orbiting and non-orbiting scroll members. The non-orbiting scroll member has a radially extending flanged portion with at least one aperture substantially aligned with the axially extending bore. At least one fastener is disposed within the aperture and the bore. A sound isolation member contacts at least one of the non-orbiting scroll member, the fastener, or the bearing housing, to reduce or eliminate noise transmission. The sound isolation member may be formed of a polymeric composite having an acoustic impedance value greater than the surrounding materials. The sound isolation member may be an annular washer, an O-ring, or a biasing member, by way of non-limiting example. In other variations, fluid passages are provided within the fastener and/or bearing housing to facilitate entry of lubricant oil to further dampen sound and noise.
Abstract:
A system may include a compressor including a compression mechanism having first and second compression members defining a compression pocket disposed between the first and second compression members that decreases in volume during operation of the compression mechanism. A heat exchanger receives compressed working fluid from the compressor. An expansion device may be disposed downstream of the heat exchanger. A lubricant separator receives lubricant and working fluid discharged from the compression mechanism and provides separated lubricant to the compression mechanism. A lubricant-injection flow path may include a lubricant fitting and extends between the lubricant separator and the compression pocket such that separated lubricant is injected into the compression pocket through the lubricant fitting.
Abstract:
A compressor may include a first scroll member, a second scroll member and a drive shaft. The first scroll member may include a first end plate defining a first discharge port and a first spiral wrap extending from the first end plate. The second scroll member may include a second end plate defining a first variable volume ratio port and a second spiral wrap extending from the second end plate and meshingly engaged with the first spiral wrap and forming compression pockets. The variable volume ratio port may be located radially outward relative to the first discharge port and in communication with a first compression pocket. The drive shaft may be engaged with the second scroll member and driving orbital displacement of the second scroll member relative to the first scroll member.
Abstract:
A compressor may include first and second compression members, first and second bearing assemblies, a sensor, and processing circuitry. The second compression member cooperates with the first compression member to define a compression pocket. The first and second bearing assemblies rotatably support the first and second compression members, respectively. The first bearing assembly may include a bearing rotor and a bearing stator. The bearing stator may surround the bearing rotor and may include poles each having a winding. The sensor may measure a radial position of the bearing rotor relative to the bearing stator. The processing circuitry may be in communication with the sensor and may control electrical current supplied to the windings based on the radial position measured by the sensor to adjust the radial position of the bearing rotor relative to the bearing stator.
Abstract:
Scroll compressor designs are provided to minimize vibration, sound, and noise transmission. The scroll compressor has a bearing housing, and orbiting and non-orbiting scroll members. The non-orbiting scroll member has a radially extending flanged portion with at least one aperture substantially aligned with the axially extending bore. At least one fastener is disposed within the aperture and the bore. A sound isolation member contacts at least one of the non-orbiting scroll member, the fastener, or the bearing housing, to reduce or eliminate noise transmission. The sound isolation member may be formed of a polymeric composite having an acoustic impedance value greater than the surrounding materials. The sound isolation member may be an annular washer, an O-ring, or a biasing member, by way of non-limiting example. In other variations, fluid passages are provided within the fastener and/or bearing housing to facilitate entry of lubricant oil to further dampen sound and noise.
Abstract:
A system may include a compressor, a heat exchanger, an expansion device, and first and second working fluid flow paths. The compressor may include a compression mechanism and a motor. The heat exchanger may receive compressed working fluid from the compressor. The expansion device may be disposed downstream of the heat exchanger. The first working fluid flow path may fluidly connect the heat exchanger and the expansion device. The second working fluid flow path may be disposed downstream of the heat exchanger and may fluidly connect the heat exchanger with the compressor. The second working fluid flow path may provide compressed working fluid to the compression mechanism and to the motor.
Abstract:
A compressor includes a compression mechanism, a motor, a drive shaft, and a motor cooler. The compressor is configured to compress a working fluid. The motor dives the compression mechanism and is housed within a motor housing. The drive shaft is engaged with the motor and the compression mechanism and is configured to drive operation of the compression mechanism. The motor cooler is disposed adjacent the motor and is configured to pump a cooling working fluid around the motor. The motor cooler includes a pump that pumps the cooling working fluid into the motor housing based on a rotational speed of the drive shaft.
Abstract:
A compressor may include a first compression member, a second compression member, and a motor assembly. The second compression member is movable relative to the first compression member and cooperates with the first compression member to define a compression pocket therebetween. The motor assembly drives one of the first and second compression members relative to the other one of the first and second compression members. The motor assembly includes a stator and a rotor. The rotor is rotatable relative to the stator about a rotational axis. The stator surrounds the rotational axis. The rotor may include magnets that are arranged around the rotational axis. The magnets may be spaced apart from the stator in an axial direction that is parallel to the first rotational axis.
Abstract:
A compressor may include a non-orbiting scroll, an orbiting scroll, a drive shaft, a bearing housing and an annular seal. The non-orbiting scroll includes a first spiral wrap. The orbiting scroll includes an end plate having a second spiral wrap ending from a first side of the end plate and an annular hub extending from a second side of the end plate. The first and second spiral wraps cooperate to compress working fluid from a suction pressure to a discharge pressure. The drive shaft includes a crankpin received in the hub and drives the orbiting scroll. The bearing housing rotatably supports the drive shaft and may define a biasing chamber containing working fluid biasing the orbiting scroll toward the non-orbiting scroll in an axial direction. The annular seal may engage a diametrical surface of the hub and engage the bearing housing, thereby defining the biasing chamber.
Abstract:
A compressor may include a first scroll, a second scroll and a modulation system. The first scroll may include a first endplate and a first spiral wrap. The second scroll may include a second endplate and a second spiral wrap interleaved with the first spiral wrap and cooperating to form a plurality of working fluid pockets therebetween. The modulation system may include a temperature-responsive displacement member that actuates in response to a temperature within a space rising above a predetermined threshold. Actuation of the displacement member may be controlled to control a capacity of the compressor.