Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices
    1.
    发明申请
    Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices 失效
    智能材料:通过纳米管感应系统,复合材料和器件的应变感应和应力测定

    公开(公告)号:US20060253942A1

    公开(公告)日:2006-11-09

    申请号:US10542697

    申请日:2004-01-23

    IPC分类号: G21K7/00

    摘要: The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

    摘要翻译: 本发明涉及包括能够检测材料中的位移,冲击,应力和/或应变的碳纳米管的装置,制造这种装置的方法,用于感测/检测/监测位移,冲击,应力和/或 通过碳纳米管的应变,以及用于这种方法和装置的各种应用。 本发明的装置和方法都依赖于碳纳米管内机械诱导的电子扰动来检测和量化这种应力/应变。 这种检测和定量可以依赖于包括但不限于导电性/电导性和/或电阻率/电阻检测/测量,热导率检测/测量,电致发光检测/测量,光致发光检测/测量及其组合的技术 。 所有这些技术都依赖于对这些性质如何响应于机械应力和/或应变而变化的理解。

    Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices
    2.
    发明授权
    Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices 失效
    智能材料:通过纳米管感应系统,复合材料和器件的应变感应和应力测定

    公开(公告)号:US07730547B2

    公开(公告)日:2010-06-01

    申请号:US10542697

    申请日:2004-01-23

    IPC分类号: G01N23/00

    摘要: The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

    摘要翻译: 本发明涉及包括能够检测材料中的位移,冲击,应力和/或应变的碳纳米管的装置,制造这种装置的方法,用于感测/检测/监测位移,冲击,应力和/或 通过碳纳米管的应变,以及用于这种方法和装置的各种应用。 本发明的装置和方法都依赖于碳纳米管内机械诱导的电子扰动来检测和量化这种应力/应变。 这种检测和定量可以依赖于包括但不限于导电性/电导性和/或电阻率/电阻检测/测量,热导率检测/测量,电致发光检测/测量,光致发光检测/测量及其组合的技术 。 所有这些技术都依赖于对这些性质如何响应于机械应力和/或应变而变化的理解。

    Negative stiffness device and method
    3.
    发明授权
    Negative stiffness device and method 有权
    负刚度装置及方法

    公开(公告)号:US08857110B2

    公开(公告)日:2014-10-14

    申请号:US13673257

    申请日:2012-11-09

    IPC分类号: E04H9/02 E04B1/98 F16F15/00

    摘要: A negative stiffness device and method for seismic protection of a structure is described. In one embodiment, the device has an anchor frame and a movement frame laterally translatable relative to the anchor frame. The anchor frame and movement frame have respective extension portions. A linkage is pivotably connected to the extension portion of the anchor frame. A compressed spring has a first end is attached to the extension portion of the movement frame and a second end attached to the linkage. The compressed spring has a spring force. In a rest state, the compressed spring does not apply a lateral force to the movement frame. In an engaged state, the compressed spring is configured to apply a lateral force to displace the movement frame in a lateral direction of a seismic load. The spring force is amplified by the linkage when the movement frame is laterally displaced to an amplification point.

    摘要翻译: 描述了一种用于结构的抗震保护的负刚度装置和方法。 在一个实施例中,该装置具有锚架和相对于锚架可横向平移的运动框架。 锚架和运动框架具有相应的延伸部分。 联动装置可枢转地连接到锚架的延伸部分。 压缩弹簧的第一端附接到运动框架的延伸部分,第二端部连接到连杆机构上。 压缩弹簧具有弹簧力。 在静止状态下,压缩弹簧不会对运动框架施加横向力。 在接合状态下,压缩弹簧被构造成施加横向力以沿着地震载荷的横向移动移动框架。 当移动框架横向移位到放大点时,弹簧力通过连杆被放大。

    NEGATIVE STIFFNESS DEVICE AND METHOD
    4.
    发明申请
    NEGATIVE STIFFNESS DEVICE AND METHOD 有权
    负性柔性装置和方法

    公开(公告)号:US20130118098A1

    公开(公告)日:2013-05-16

    申请号:US13673257

    申请日:2012-11-09

    IPC分类号: E04H9/02 E04B1/98

    摘要: A negative stiffness device and method for seismic protection of a structure is described. In one embodiment, the device has an anchor frame and a movement frame laterally translatable relative to the anchor frame. The anchor frame and movement frame have respective extension portions. A linkage is pivotably connected to the extension portion of the anchor frame. A compressed spring has a first end is attached to the extension portion of the movement frame and a second end attached to the linkage. The compressed spring has a spring force. In a rest state, the compressed spring does not apply a lateral force to the movement frame. In an engaged state, the compressed spring is configured to apply a lateral force to displace the movement frame in a lateral direction of a seismic load. The spring force is amplified by the linkage when the movement frame is laterally displaced to an amplification point.

    摘要翻译: 描述了一种用于结构的抗震保护的负刚度装置和方法。 在一个实施例中,该装置具有锚架和相对于锚架可横向平移的运动框架。 锚架和运动框架具有相应的延伸部分。 联动装置可枢转地连接到锚架的延伸部分。 压缩弹簧的第一端附接到运动框架的延伸部分,第二端部连接到连杆机构上。 压缩弹簧具有弹簧力。 在静止状态下,压缩弹簧不会对运动框架施加横向力。 在接合状态下,压缩弹簧被构造成施加横向力以沿着地震载荷的横向移动移动框架。 当移动框架横向移位到放大点时,弹簧力通过连杆被放大。

    Structural vibration damper with continuously variable stiffness
    5.
    发明授权
    Structural vibration damper with continuously variable stiffness 失效
    结构振动阻尼器具有连续可变刚度

    公开(公告)号:US6098969A

    公开(公告)日:2000-08-08

    申请号:US135370

    申请日:1998-08-17

    IPC分类号: F16F13/00 F16F15/04 F16M1/00

    CPC分类号: F16F13/00 F16F15/04

    摘要: A semi-active variable stiffness control (SAIVS) device, which can change its stiffness continuously and smoothly between a maximum and minimum stiffness. It comprises four spring and telescoping tube elements arranged in a rhombus configuration with pivot joints at the vertices. A control rod powered by a DC servomotor reconfigures the aspect ratio of the rhombus under computer control. This aspect ratio determines the stiffness of the device, and is continuously variable using little power. The SAIVS is installed as a connection between structural elements, and varies the connection stiffness smoothly by changing its configuration in response to a control algorithm in the computer. The algorithm obtains accelerometer and displacement input as feedback to optimize the result. Thus it maintains the structure in a non-resonant vibration state under dynamic disturbances such as earthquakes and windstorms.

    摘要翻译: 一种半主动可变刚度控制(SAIVS)装置,可以在最大和最小刚度之间连续平稳地改变其刚度。 它包括四个弹簧和伸缩管元件,其布置为菱形配置,在顶点具有枢转接头。 由直流伺服电机供电的控制杆在计算机控制下重新配置菱形的纵横比。 该宽高比决定了设备的刚度,并且使用很少的功率连续地变化。 SAIVS安装为结构元件之间的连接,并通过响应于计算机中的控制算法改变其配置来平滑地改变连接刚度。 该算法获得加速度计和位移输入作为反馈来优化结果。 因此,在诸如地震和风暴之类的动态干扰下,它将结构保持在非共振振动状态。

    Non-contact strain sensing of objects by use of single-walled carbon nanotubes
    6.
    发明授权
    Non-contact strain sensing of objects by use of single-walled carbon nanotubes 有权
    通过使用单壁碳纳米管对物体进行非接触应变检测

    公开(公告)号:US09255853B2

    公开(公告)日:2016-02-09

    申请号:US14398799

    申请日:2013-03-14

    摘要: In some embodiments, the present invention provides methods of detecting strain associated with an object by: (1) irradiating a composition that has been applied to the object, where the composition comprises semiconducting single-walled carbon nanotubes; (2) measuring an emission from the irradiated composition, where the emission comprises near infrared emission; and (3) correlating the near infrared emission to the presence or absence of strain associated with the object. In some embodiments, the aforementioned steps occur without physically contacting the object or the composition. In some embodiments, the aforementioned steps occur without utilizing Raman spectroscopy. Further embodiments of the present invention also include a step of applying the composition to the object.

    摘要翻译: 在一些实施方案中,本发明提供了通过以下步骤检测与物体相关的菌株的方法:(1)照射已经施用于物体的组合物,其中所述组合物包含半导体单壁碳纳米管; (2)测量辐射组合物的发射,其中发射包括近红外发射; 和(3)将近红外发射与存在或不存在与物体相关联的应变相关联。 在一些实施方案中,上述步骤在物理接触物体或组合物的情况下发生。 在一些实施方案中,上述步骤在不使用拉曼光谱的情况下进行。 本发明的其它实施方案还包括将组合物施用于物体的步骤。

    NON-CONTACT STRAIN SENSING OF OBJECTS BY USE OF SINGLE-WALLED CARBON NANOTUBES
    7.
    发明申请
    NON-CONTACT STRAIN SENSING OF OBJECTS BY USE OF SINGLE-WALLED CARBON NANOTUBES 有权
    使用单壁碳纳米管的非接触式应变物体感应

    公开(公告)号:US20150115159A1

    公开(公告)日:2015-04-30

    申请号:US14398799

    申请日:2013-03-14

    IPC分类号: G01L1/24 G01N21/359

    摘要: In some embodiments, the present invention provides methods of detecting strain associated with an object by: (1) irradiating a composition that has been applied to the object, where the composition comprises semiconducting single-walled carbon nanotubes; (2) measuring an emission from the irradiated composition, where the emission comprises near infrared emission; and (3) correlating the near infrared emission to the presence or absence of strain associated with the object. In some embodiments, the aforementioned steps occur without physically contacting the object or the composition. In some embodiments, the aforementioned steps occur without utilizing Raman spectroscopy. Further embodiments of the present invention also include a step of applying the composition to the object.

    摘要翻译: 在一些实施方案中,本发明提供了通过以下步骤检测与物体相关的菌株的方法:(1)照射已经施用于物体的组合物,其中所述组合物包含半导体单壁碳纳米管; (2)测量辐射组合物的发射,其中发射包括近红外发射; 和(3)将近红外发射与存在或不存在与物体相关联的应变相关联。 在一些实施方案中,上述步骤在物理接触物体或组合物的情况下发生。 在一些实施方案中,上述步骤在不使用拉曼光谱的情况下进行。 本发明的其它实施方案还包括将组合物施用于物体的步骤。