摘要:
In one aspect, the present invention generally provides methods for fabricating substrates for use in a variety of analytical and/or diagnostic applications. Such a substrate can be generated by exposing a semiconductor surface (e.g., silicon surface) to a plurality of short laser pulses to generate micron-sized, and preferably submicron-sized, structures on the surface. The structured surface can then be coated with a thin metallic layer, e.g., one having a thickness in a range of about 10 nm to about 1000 nm.
摘要:
An apparatus and method are provided for performing Quality Assurance of complex beams of penetrating radiation inside a patient. A detector with a transverse scintillating screen images the radiation inside a tissue phantom with high spatial resolution. The scintillator is comprised of a mixture of two or more scintillators emitting different spectra of light and having different characteristic responses as a function of the beam LET value. The optics relaying the scintillation output have variable transmission with wavelength, further shaping the spectrum of light transmitted to the imaging sensor which also has spectrally varying sensitivity. Parameters of the scintillator construction, the optics, and the imaging sensor are chosen so the output of the composite detector is proportional to a characteristic of the input beam, for example the dose deposited as a function of depth inside the tissue phantom.
摘要:
An apparatus and method are disclosed for actinic inspection of semiconductor masks intended for extended ultraviolet (EUV) lithography, or similar objects, with feature sizes less than 100 nm. The approach uses a coherent light source with wavelength less than 120 nm. Inside a vacuum system, an optical system directs the light to an object, i.e., the mask or mask blank, and directs the resulting reflected or transmitted light to an imaging sensor. A computational system processes the imaging sensor data to generate phase and amplitude images of the object. The preferred imaging modality, a form of digital holography, produces images of buried structures and phase objects, as well as amplitude or reflectance images, with nanometer resolution less than or equal to the feature size of the mask.
摘要:
A method for performing a diagnostic assay of an analyte, wherein the method comprises providing a base that has been structured using laser processing so as to provide a substrate with at least one patterned surface, wherein the laser processing comprises the selective application of pulsed laser energy to the base, whereby to melt a surface layer of the base which resolidifies, whereby to create the at least one patterned surface; applying a metal to the at least one patterned surface so as to provide at least one metalized patterned surface; positioning the analyte on the at least one metalized patterned surface; and performing a diagnostic assay of the analyte; wherein the metal comprises a metal film.
摘要:
Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
摘要:
Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
摘要:
An apparatus and method are disclosed for actinic inspection of semiconductor masks intended for extended ultraviolet (EUV) lithography, or similar objects, with feature sizes less than 100 nm. The approach uses a coherent light source with wavelength less than 120 nm. Inside a vacuum system, an optical system directs the light to an object, i.e., the mask or mask blank, and directs the resulting reflected or transmitted light to an imaging sensor. A computational system processes the imaging sensor data to generate phase and amplitude images of the object. The preferred imaging modality, a form of digital holography, produces images of buried structures and phase objects, as well as amplitude or reflectance images, with nanometer resolution less than or equal to the feature size of the mask.
摘要:
Apparatus for use in performing a diagnostic assay of an analyte, the apparatus comprising a base that has been structured using laser processing so as to provide at least one patterned surface by melting and resolidification of the base, wherein the patterned surface is characterized by structures ranging in scale from 10 to 2000 nanometers and further wherein the pattern is stochastic in all three spatial dimensions; and a metal applied to the at least one patterned surface so as to provide at least one metalized patterned surface.
摘要:
Nanostructured sensing substrates (nanodevices) offer greatly enhanced sensitivity and selectivity for detection of molecular species through a variety of sensing modalities. In order to produce repeatable and quantifiable assays, it is desirable to apply the analyte uniformly to the nanodevice. Uniform analyte application is promoted by applying the analyte in a fluid mixture or solution which uniformly wets the nanostructured device. The fluid, or mixture of fluids, is chosen to both wet the nanodevice and dissolve or uniformly suspend the analyte.
摘要:
A probe with a blood circulation sensor and a force or pressure sensor is placed against a patient. One part of the probe applies a force to another part of the probe which is pressed against the patient at one or more locations. The variation of a measure of blood circulation is recorded as a function of the applied pressure, thereby giving the operator a specific knowledge of the Tissue Perfusion Pressure (TPP), a measure of circulatory health, at each location.