摘要:
Methods of etching a carbon-rich layer on organic photoresist overlying an inorganic layer can utilize a process gas including CxHyFz, where y≧x and z≧0, and one or more optional components to generate a plasma effective to etch the carbon-rich layer with low removal of the inorganic layer. The carbon-rich layer can be removed in the same processing chamber, or alternatively can be removed in a different processing chamber, as used to remove the bulk photoresist.
摘要:
Methods for stripping resist from a semiconductor substrate in a resist stripping chamber are provided. The methods include producing a remote plasma containing reactive species and cooling the reactive species inside the chamber prior to removing the resist with the reactive species. The reactive species can be cooled by being passed through a thermally-conductive gas distribution member. By cooling the reactive species, damage to a low-k dielectric material on the substrate can be avoided.
摘要:
Methods of processing a substrate so as to protect an active area include positioning a substrate in an inductively coupled plasma processing chamber, supplying process gas to the chamber, generating plasma from the process gas and processing the substrate so as to protect the active area by maintaining a plasma potential of about 5 to 15 volts at the substrate surface and/or passivating the active area by using a siliane-free process gas including at least one additive effective to form a protective layer on the active area of the substrate wherein the protective layer includes at least one element from the additive which is already present in the active area.
摘要:
A method for forming devices with silicon gates over a substrate is provided. Silicon nitride spacers are formed on sides of the silicon gates. An ion implant is provided using the silicon nitride spacers as masks to form ion implant regions. A nonconformal layer is selectively deposited over the spacers and gates that selectively deposits a thicker layer on tops of the gates and spacers and between spacers than on sidewalls of the silicon nitride spacers. Sidewalls of the nonconformal layer are etched away on sidewalls of the silicon nitride spacers. The silicon nitride spacers are trimmed.