摘要:
An adaptation of the sum-of-absolute-differences (SAD) calculation is implemented by modifying existing circuitry in a microprocessor. The adaptation yields a reduction of over 30% for a current SAD calculation. The adaptation includes a first and second operand register, each storing respectively a first and second set of 2's complement binary data, an arithmetic logic unit (ALU), and a destination register. An add/subtract enable input on the ALU receives a most significant bit (MSB) of the second set of binary data. The ALU adds the first and second data sets if the MSB is a “0” and subtracts the second data set from the first data set if the MSB is a “1.” The add/subtract enable input has the effect of taking the absolute value of the second data set without having to first perform an absolute value determination, thus eliminating processing steps.
摘要:
A packed half-word addition and subtraction operation is performed by a microprocessor in parallel upon half-word operands obtained from designated top or bottom half-word locations of designated source registers of a register file and the sum and difference results of such operation are packed into respective top and bottom half-word locations of a designated destination register. The microprocessor includes an arithmetic-logic unit (ALU) with adder circuitry that can be selectively split into separate half-word adders that are independently selectable to perform either an addition operation or subtraction operation upon the selected half-word operands. The half-word adders of the ALU access the operands from source registers via a set of multiplexers that select among the top and bottom half-word locations. Operations with halving and saturation modifications to the sum and difference results may also be provided.
摘要:
Various embodiments include methods and related media for performing operations including a return operation. One such method includes testing a content of a return value register and setting status flags. Testing the content of the return value register and setting the status flags are performed in response to a single instruction.
摘要:
A packed half-word addition and subtraction operation is performed by a microprocessor in parallel upon half-word operands obtained from designated top or bottom half-word locations of designated source registers of a register file and the sum and difference results of such operation are packed into respective top and bottom half-word locations of a designated destination register. The microprocessor includes an arithmetic-logic unit (ALU) with adder circuitry that can be selectively split into separate half-word adders that are independently selectable to perform either an addition operation or subtraction operation upon the selected half-word operands. The half-word adders of the ALU access the operands from source registers via a set of multiplexers that select among the top and bottom half-word locations. Operations with halving and saturation modifications to the sum and difference results may also be provided.
摘要:
Apparatus, systems, and methods may operate to receive from a requesting device, at a memory device, a request to access a memory domain associated with the memory device, and to deny, by the memory device, the request if the memory domain comprises any part of a secure domain, and the requesting device has not asserted a secure transfer indication. Additional operations may include granting the request if the memory domain comprises some part of the secure domain and the requesting device has asserted the secure transfer signal, or if the memory domain comprises only a non-secure domain. Additional apparatus, systems, and methods are disclosed.
摘要:
An apparatus comprises register means for storing a return context upon initiation of a supervisor call instruction and restoring means to restore a privilege level and status register upon execution of a supervisor return instruction. The supervisor call instruction can be called from all contexts.
摘要:
A combined native (RISC or CISC) microprocessor and stack (Java™) machine are constructed so that Java™ VM instructions can be executed in hardware. Most Java™ instructions are executed directly, while more complex Java™ instructions, such as those manipulating Java™ objects, are executed as native microcode. In order for native microcode instructions to access the Java™ operand stack, a Java™ operand stack pointer points to the register file location that is the current top of the stack, while a remap bit in the status register indicates that registers specified in native instructions are remapped as the maximum Java™ operand stack pointer value minus the present value of the Java™ operand stack pointer.
摘要:
A microprocessor circuit useful for indexed addressing of byte-addressable memories includes word-length index, base address, and destination registers designated by an instruction. The instruction also specifies one byte packed within the index register, which is to be extracted. A multiplexer has a word-wide input end accessing all of the bytes of the index register, and responsive to byte selection control passes the specified byte to its output. The extracted byte is provided directly at specific bit positions of a zero-extended address offset word. The offset word is added to the base address, the sum being used to address memory contents that are loaded into the destination register.
摘要:
Various embodiments include methods and related media for performing operations including a return operation. One such method includes testing a content of a return value register and setting status flags. Testing the content of the return value register and setting the status flags are performed in response to a single instruction.
摘要:
A packed half-word addition and subtraction operation is performed by a microprocessor in parallel upon half-word operands obtained from designated top or bottom half-word locations of designated source registers of a register file and the sum and difference results of such operation are packed into respective top and bottom half-word locations of a designated destination register. The microprocessor includes an arithmetic-logic unit (ALU) with adder circuitry that can be selectively split into separate half-word adders that are independently selectable to perform either an addition operation or subtraction operation upon the selected half-word operands. The half-word adders of the ALU access the operands from source registers via a set of multiplexers that select among the top and bottom half-word locations. Operations with halving and saturation modifications to the sum and difference results may also be provided.