Abstract:
The present disclosure includes optical articles comprising a lens having first and second lens surfaces and a protective layer having first and second protective surfaces that is coupled to the lens such that the first protective surface is disposed on the second lens surface. The optical article can comprise a plurality of convex or concave optical elements defined on the second lens surface or the first protective surface. The protective layer can have a maximum thickness larger than a maximum height of each of the optical elements such that the protective layer encapsulates the optical elements.
Abstract:
The invention relates to a process for manufacturing an ophthalmic lens equipped with an insert (1), by means of a mold, comprising: —a step of molding a puck (3) comprising two faces (3A, 3B) and said insert (1) positioned between said faces; and —a step of machining at least one of said faces (3A, 3B) of said puck in order to form one of the front or back faces of said ophthalmic lens, the insert (1) being positioned relative to one portion of the mold before said molding step, According to the invention, an element associated with the insert or an imprint of this element left in the puck after the element has been removed comprises at least one of its portions providing a positional reference relative to said insert (1) in the machining step.
Abstract:
A method for obtaining an ophthalmic lens, includes: —the step of selecting a material that displays a threshold of pinhole formation during a machining step of a finished surface (20) in a material-removing depth (D) of 0.07 mm, which is at least 15% higher than the threshold of pinhole formation during a machining step of a finished surface in a material-removing depth (D) of 0.22 mm; —the step of selecting a set point for finishing depth of cut (A) between 0.015 mm and 0.075 mm; and—the step of selecting a set point for finishing feed between 85% and 99% of the threshold of pinhole formation for the material-removing depth (D) given by the sum of the selected set point for finishing depth of cut (A) and the blank roughness (B′).
Abstract:
Disclosed is a holding system for supporting a wafer having a first surface, a second surface and a third surface joining the first and second surfaces, and an optical element having a first surface, a second surface and a third surface joining the first and second surfaces, the holding system including: a support including first support unit configured to support the second and/or third surface of the wafer and second support unit configured to support the second and/or third surface of the optical element; a positioning unit configured to position the second surface of the wafer relative to the first surface of the optical element; and a mechanical unit configured to move the first and second support units one relative to the other so as to move the second surface of the wafer and the first surface of the optical element to form an optical system.
Abstract:
Method for encapsulating at least partly a light-guide optical element in a transparent capsule, the method comprising at least: —a transparent capsule providing step during which a transparent capsule is provided, —a light-guide optical element providing step during which a light-guide optical element is provided, —an adhesive deposing step during which an adhesive is deposited on at least part of a face of the transparent capsule and/or of a face of the light-guide optical element, —a positioning step during which the transparent capsule and the light-guide optical element are positioned one relative to the other so as to form an optical system, —a bonding step during which the light-guide optical element and the transparent capsule are made integral with the adhesive, wherein the method further comprises prior to the bonding step a control step during which at least one parameter of the optical system is controlled.
Abstract:
A method for manufacturing an optical article including the following steps: a. providing a first substrate with a main surface, b. depositing a second substrate on the main surface with an adhesive layer so that the space between the first substrate and second substrate is filled by the adhesive layer, c. curing the adhesive layer to induce a polymerization of the adhesive layer, wherein a tension step takes place after steps a. and b., and before step c., the tension step including applying symmetrically a tension, preferentially with a central symmetry, preferentially a radial isotropic tension or an ortho-distributed symmetrical tension, on the edges of the second substrate sensibly in a tension plan parallel to a plan representative of the main surface.
Abstract:
Method for encapsulating at least partly a light-guide optical element in a transparent capsule, the method comprising at least: —a transparent capsule providing step during which a transparent capsule is provided, —a light-guide optical element providing step during which a light-guide optical element is provided, —an adhesive deposing step during which an adhesive is deposited on at least part of a face of the transparent capsule and/or of a face of the light-guide optical element, —a positioning step during which the transparent capsule and the light-guide optical element are positioned one relative to the other so as to form an optical system, —a bonding step during which the light-guide optical element and the transparent capsule are made integral with the adhesive, wherein the method further comprises prior to the bonding step a control step during which at least one parameter of the optical system is controlled.
Abstract:
A method for obtaining an ophthalmic lens, includes: —the step of selecting a material that displays a threshold of pinhole formation during a machining step of a finished surface (20) in a material-removing depth (D) of 0.07 mm, which is at least 15% higher than the threshold of pinhole formation during a machining step of a finished surface in a material-removing depth (D) of 0.22 mm; —the step of selecting a set point for finishing depth of cut (A) between 0.015 mm and 0.075 mm; and—the step of selecting a set point for finishing feed between 85% and 99% of the threshold of pinhole formation for the material-removing depth (D) given by the sum of the selected set point for finishing depth of cut (A) and the blank roughness (B′).
Abstract:
The present disclosure includes optical articles comprising a lens having first and second lens surfaces and a protective layer having first and second protective surfaces that is coupled to the lens such that the first protective surface is disposed on the second lens surface. The optical article can comprise a plurality of convex or concave optical elements defined on the second lens surface or the first protective surface. The protective layer can have a maximum thickness larger than a maximum height of each of the optical elements such that the protective layer encapsulates the optical elements.
Abstract:
The present disclosure includes optical articles comprising a lens having first and second lens surfaces and a protective layer having first and second protective surfaces that is coupled to the lens such that the first protective surface is disposed on the second lens surface. The optical article can comprise a plurality of convex or concave optical elements defined on the second lens surface or the first protective surface. The protective layer can have a maximum thickness larger than a maximum height of each of the optical elements such that the protective layer encapsulates the optical elements.