Abstract:
The invention relates to a device for determining the position of a characterizing point of an eye of a wearer provided with a spectacle frame (400), including: at least one image sensor apparatus (120); and positioning element for positioning the image sensor device relative to the spectacle frame (400), such that, when the spectacle frame is arranged in a useful position on the head of the wearer, the image sensor apparatus is capable of capturing an image of the eye of the wearer; and element for determining the position of a characterizing point of the eye from the at least one image of the eye of the wearer captured by the image sensor apparatus. The invention also relates to a method for determining the position of a characterizing point of an eye of a wearer, a device and a method for determining the direction of the gaze and a method for determining associated areas of wear of an ophthalmic lens.
Abstract:
Disclosed is a binocular optoelectronic device wearable by a user for measuring a light sensitivity threshold of the user, including: a diffuser configured to face eyes of the user; at least one light source for emitting light toward the diffuser. The diffuser includes predetermined parameters allowing to provide a quasi-homogeneous light diffusion to at least one eye of the user from light emitted by the at least one light source.
Abstract:
Method for determining an ophthalmic lens which comprises an aspherical continuous layer and an aspherical Fresnel layer. The aspherical continuous layer is supported by one of the faces of the lens, the same holds for the aspherical Fresnel layer.
Abstract:
Method for determining an ophthalmic lens which comprises an aspherical continuous layer and an aspherical Fresnel layer. The aspherical continuous layer is supported by one of the faces of the lens, the same holds for the aspherical Fresnel layer.
Abstract:
Disclosed is a method wherein the following steps are performed: a) the subject is placed in a natural posture, in which at least one of the gaze directions of the subject points to a visual target, b) an image capture apparatus is placed between the head of the subject and the visual target, c) the relative posture of the image capture apparatus and head of the subject is adjusted in order for the pupil of the image capture apparatus to be positioned close to the gaze direction of at least one of the eyes of the subject, d) an image of the head of the subject is captured, and e) the at least one geometrico-morphological parameter is deduced from this image.
Abstract:
Method for optimizing an optical lens equipment for a wearer Method for optimizing an optical lens equipment for a wearer, the method comprising:—an eye tracking device providing step, during which a spectacle frame mounted eye tracking device is provided to the wearer, —a wearer parameter monitoring step, during which at least one parameter relating to the eyes of the wearer is monitored using the eye tracking device and—an optimization step during which the optical lens equipment is optimized based at least partly on the base of the monitoring of the at least one parameter during the wearer parameter monitoring step.
Abstract:
Method for optimizing an optical lens equipment for a wearer Method for optimizing an optical lens equipment for a wearer, the method comprising:—an eye tracking device providing step, during which a spectacle frame mounted eye tracking device is provided to the wearer, —a wearer parameter monitoring step, during which at least one parameter relating to the eyes of the wearer is monitored using the eye tracking device and—an optimization step during which the optical lens equipment is optimized based at least partly on the base of the monitoring of the at least one parameter during the wearer parameter monitoring step.
Abstract:
A progressive addition lens for a wearer, the optical lens having an addition lower by at least 0.5 diopter to the prescribed addition value of the wearer, wherein for a pupil diameter of 4 mm the modulation transfer function is greater or equal to 0.1 when measured for a spatial frequency comprised between 0 and 20 cycles per degree