Abstract:
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
Abstract:
A photocontrol circuit includes a set of light level detection circuitry and a low power consumption power supply that powers the set of light level detection circuitry. In response to a determination that light sensed in ambient environment is at or below the light level threshold, the light level detection circuitry switches a 0 to 10V dimming input line to approximately 10V, controlling a luminaire to emit maximum light. In response to a determination that light sensed in ambient environment is above the light level threshold, the light level detection circuitry switches the 0 to 10V dimming input line to less than approximately 0.5 Volts, thereby controlling the luminaire to emit minimum or no light. The photocontrols embodiments described herein advantageously employ the 0 to 10V dimming line as the luminaire control line, unlike previous photocontrols which typically switch the power input to the luminaire. The photocontrol circuit may be housed in a photocontrol module comprising a base and a cover.
Abstract:
A photocontrol circuit includes a set of light level detection circuitry and a low power consumption power supply that powers the set of light level detection circuitry. In response to a determination that light sensed in ambient environment is at or below the light level threshold, the light level detection circuitry switches a 0 to 10V dimming input line to approximately 10V, controlling a luminaire to emit maximum light. In response to a determination that light sensed in ambient environment is above the light level threshold, the light level detection circuitry switches the 0 to 10V dimming input line to less than approximately 0.5 Volts, thereby controlling the luminaire to emit minimum or no light. The photocontrols embodiments described herein advantageously employ the 0 to 10V dimming line as the luminaire control line, unlike previous photocontrols which typically switch the power input to the luminaire. The photocontrol circuit may be housed in a photocontrol module comprising a base and a cover.
Abstract:
Systems and methods which utilize luminaires that include wireless communication capabilities that allow the luminaires to be controlled by a wireless-enabled mobile system disposed proximate the luminaires. Control of a network of wireless-enabled luminaires is provided via a single mobile system utilizing wireless communication through at least one gateway luminaire without requiring connection between the luminaires and a central management system (CMS). Information sent to or collected from the luminaires through the mobile system may be transferred via a mobile network interface from or to a CMS. The luminaires may use their wireless communication ability to obtain data from nearby wireless sensors, which data may be collected by the mobile system from luminaires in the network of luminaires when the mobile system is positioned proximate at least one of the luminaires. The sensor data and/or other data may be uploaded to the central management system in a non-real-time period.
Abstract:
An article and circuit that controllably dims a luminaire, for example without controlling a line power of the luminaire. The luminaire includes a traditional three-contact socket to receive a photocontroller, such as that used for street lights. The article uses a desired dimming control signal to provide an output control signal that controls whether the light source in the luminaire is turned ON or turned OFF to thereby effect the desired amount of dimming. The output control signal may be a pulse width modulated (PWM) signal with a duty cycle that is related to the desired level of illumination or dimming. The system may use a dimming signal from a five or seven contact dimming photocontroller to provide such an output control signal to control the light-level for the luminaire.
Abstract:
Photocontrol apparatus that controls a luminaire or other load such that the luminaire is switched on during nighttime hours and off during the daytime. The photocontrol generates a micro-amp power supply using the voltage generated across a high value resistor in series with an alternating current (AC) power line. The photocontrol consumes only microwatts of power in either the ON or the OFF state, unlike traditional relay- or triac-based photocontrols. The photocontrol does not require a voltage generating photo sensor to generate power for the photocontrol. A solar cell, semiconductor photo diode or photo diode string, cadmium sulfide cell, semiconductor ambient light sensor, etc., may be used as the sensor element.
Abstract:
A number of luminaires can be communicably coupled and networked. Some or all of the luminaires may be equipped with a number of sensors including motion sensors. Upon detecting motion of an object in the vicinity of a luminaire, the luminaire can increase the luminous output of the lighting subsystem in the luminaire and communicate a targeted or broadcast output signal to some or all of the remaining luminaires in the network. The output signal may variously contain data indicative of one or more parameters related to motion of the object (direction of travel, velocity, etc.) or one or more parameters related to the increased luminous output of the luminaire. Responsive to the receipt of an output signal generated by another luminaire, the luminaire may autonomously adjust the luminous output of the lighting subsystems responsive to an event detected by the other luminaire.
Abstract:
Disclosed herein is a remotely adjustable lighting system. The lighting system includes a luminaire including one or more solid-state light systems and a non-line-of-sight wireless transceiver. The output intensity of the solid-state light systems is adjustable. The non-line-of-sight transceiver in the luminaire can receive one or more non-line-of-sight wireless signals transmitted by a transceiver in a general purpose handheld computing device. Instructions and data including configuration and output intensity adjustments may be communicated between the general purpose handheld computing device and the luminaire via one or more non-line-of-sight wireless signals.
Abstract:
A luminaire comprising a solid-state light source and a photosensitive transducer each operatively coupled to a controller. The photosensitive transducer is oriented to be within an illumination path of the solid-state light source. When the solid-state light source is in an ON state in which at least some light is produced, the controller controls the solid-state light source to be in the OFF state in which no light is produced for a brief measurement period imperceptible to a human. During the measurement period the controller obtains an ambient light level measurement from the photosensitive transducer without interference from the solid-state light source, which is in the OFF state. The controller may record turn ON and turn OFF times of the solid-state light source for use in controlling the solid-state light source in various circumstances.
Abstract:
An illumination system correlates solar time to a clock and controls lighting or illumination based on time. The illumination system may turn ON light source(s) at a first level at a turn ON time, correlated to be around or at dusk, and turn OFF light source(s) at a turn OFF time, correlated to be around or at dawn. The illumination system may reduce a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. Turn ON, turn OFF, decrease and increase times may be determined based on recent levels of light or illumination in the environment, for example via average or median levels over a number of previous daily cycles. Filtering may eliminate aberrant events.