Manufacturing hydrocarbons
    1.
    发明授权

    公开(公告)号:US11015131B2

    公开(公告)日:2021-05-25

    申请号:US16541297

    申请日:2019-08-15

    摘要: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.

    MANUFACTURING HYDROCARBONS
    2.
    发明申请

    公开(公告)号:US20200063043A1

    公开(公告)日:2020-02-27

    申请号:US16541297

    申请日:2019-08-15

    摘要: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.

    Manufacturing a base stock
    5.
    发明授权

    公开(公告)号:US10858600B2

    公开(公告)日:2020-12-08

    申请号:US16541617

    申请日:2019-08-15

    摘要: Systems and a method for manufacturing a base stock from a light gas stream are provided. An example method includes oxidizing the light gas stream to form a raw ethylene stream. Water is removed from the raw ethylene stream, and carbon monoxide in the raw ethylene stream is oxidized. Carbon dioxide is separated from the raw ethylene stream, and the raw ethylene stream is oligomerized to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and a light alpha olefin is recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. the hydro-processed stream is distilled to form the base stock.

    MANUFACTURING A BASE STOCK
    6.
    发明申请

    公开(公告)号:US20200063045A1

    公开(公告)日:2020-02-27

    申请号:US16541617

    申请日:2019-08-15

    摘要: Systems and a method for manufacturing a base stock from a light gas stream are provided. An example method includes oxidizing the light gas stream to form a raw ethylene stream. Water is removed from the raw ethylene stream, and carbon monoxide in the raw ethylene stream is oxidized. Carbon dioxide is separated from the raw ethylene stream, and the raw ethylene stream is oligomerized to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and a light alpha olefin is recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. the hydro-processed stream is distilled to form the base stock.

    HEAT SOURCE FOR PYROLYSIS PROCESS
    10.
    发明申请

    公开(公告)号:US20220235282A1

    公开(公告)日:2022-07-28

    申请号:US17643044

    申请日:2021-12-07

    IPC分类号: C10G11/18 C10G11/12

    摘要: Systems and methods are provided for using a reverse flow reactor (or another reactor with flows in opposing directions at different parts of a process cycle) for pyrolysis of hydrocarbons. The systems and methods can include a reactor that includes a combustion catalyst to initiate and/or maintain combustion within the reactor in a controlled manner during the heating and/or regeneration portion(s) of the reaction cycle. A fuel can also be used that has a greater resistance to auto-combustion, such as a fuel that is composed primarily of methane and/or other hydrocarbons. During operation, the temperature in at least an initial portion of the reactor can be maintained at a temperature so that auto-ignition of the auto-combustion resistant fuel injected during the heating step(s) is reduced or minimized. This can allow combustion to be initiated when the auto-combustion resistant fuel comes into contact with the catalyst. Additionally, the amount and positioning of the catalyst within the reactor can be controlled so that combustion of the fuel takes place over a substantially longer period of time than combustion during a conventional reactor heating step. Because the fuel is moving within the reactor during combustion, extending the combustion time results in a substantial expansion of the volume where combustion occurs. Optionally in combination with an improved reaction cycle, this can expand the portion of the reactor that is directly heated by combustion, allowing for an improved temperature distribution within the reactor during the pyrolysis step.