Abstract:
A motor drive system enabling detection of cutting fluid deposited at a housing of electronic components. A housing holding electronic components of a motor drive system has top faces slanted with respect to the horizontal plane so as to guide the deposited cutting fluid. The housing further includes storage parts collecting the cutting fluid guided along the top faces. The storage parts may be graduated so as to enable the collected amount of the cutting fluid to be measured. The storage parts may be configured to be detachable from the housing.
Abstract:
A motor drive device is capable of allowing a user to surely recognize that effect when a cutting fluid adheres to a casing. The motor drive device includes an electronic component and a casing that houses the electronic component. A part of the casing changes color when coming in contact with a cutting fluid and the casing may change to different colors based on the concentration of the cutting fluid.
Abstract:
A compact motor-drive unit wherein each component can be stably fixed to the unit. A motor-drive unit has a plurality of substrates each having a circuit for driving a motor; semiconductor devices mounted on the respective substrates; at least one smoothing capacitor mounted on at least one of the substrates; and a heat radiator having a heat-transferring surface adjacent to the semiconductors. The smoothing capacitor is positioned within a swept area formed by moving the first substrate arranged generally parallel to a base surface, in a counter-front direction, so that the smoothing capacitor is separated from the first substrate.
Abstract:
A PWM signal generation unit generates a PWM signal to drive a motor, based on a current value of the motor sampled by a current value sampling unit, a position or speed of the motor sampled by a motor sampling unit, and a position or speed of a driven object sampled by a driven object sampling unit. An operation stop unit stops the operation of any one of the motor sampling unit and the driven object sampling unit depending on the power stored in the DC link part and power to which the control power source can supply when the alternating-current power source fails.
Abstract:
A motor driving device is equipped with a narrow pitch component group made up from a plurality of narrow pitch components having a plurality of terminals, and in which an interval between the plurality of terminals is less than or equal to a predetermined distance, a heat generating component group made up from a plurality of heat generating components, which are components other than the narrow pitch components, and which generate heat greater than or equal to a predetermined amount, a fan configured to blow wind onto the heat generating component group in order to cool the heat generating component group, and a printed board on which the narrow pitch component group is mounted in a manner so that wind is not blown onto the narrow pitch component group by the fan.
Abstract:
A motor drive device is capable of allowing a user to surely recognize that effect when a cutting fluid adheres to a casing. The motor drive device includes an electronic component and a casing that houses the electronic component. A part of the casing changes color when coming in contact with a cutting fluid and the casing may change to different colors based on the concentration of the cutting fluid.
Abstract:
A motor drive apparatus in which a main power supply used for motor drive is supplied via a magnetic contactor includes: a monitoring unit that monitors a main power supply voltage at an AC power supply input side of the magnetic contactor in a state in which contacts of the magnetic contactor are opened; a determination unit that determines whether the main power supply voltage monitored by the monitoring unit is normal; and a magnetic contactor control unit that outputs a command that controls opening and closing of contacts of the magnetic contactor, wherein when it is determined by the determination unit that the main power supply voltage is abnormal, the magnetic contactor control unit maintains an output of an open command such that the contacts of the magnetic contactor are opened.
Abstract:
A motor driving device includes: a printed circuit board; a surface mounted component group of multiple surface mounted components surface-mounted on a printed surface of the printed circuit board; a heat-generating component group of multiple heat-generating components that generate an amount of heat equal to or larger than a predetermined amount, the heat-generating component group being provided on the printed surface side of the printed circuit board; a fan configured to blow air to the heat-generating component group to thereby cool the heat-generating components; and a cover configured to block flow of air blown by the fan so that the air blown by the fan will not flow to the surface mounted components.
Abstract:
A motor drive apparatus in which a main power supply used for motor drive is supplied via a magnetic contactor includes: a monitoring unit that monitors a main power supply voltage at an AC power supply input side of the magnetic contactor in a state in which contacts of the magnetic contactor are opened; a determination unit that determines whether the main power supply voltage monitored by the monitoring unit is normal; and a magnetic contactor control unit that outputs a command that controls opening and closing of contacts of the magnetic contactor, wherein when it is determined by the determination unit that the main power supply voltage is abnormal, the magnetic contactor control unit maintains an output of an open command such that the contacts of the magnetic contactor are opened.
Abstract:
A motor drive system enabling detection of cutting fluid deposited at a housing of electronic components. A housing holding electronic components of a motor drive system has top faces slanted with respect to the horizontal plane so as to guide the deposited cutting fluid. The housing further includes storage parts collecting the cutting fluid guided along the top faces. The storage parts may be graduated so as to enable the collected amount of the cutting fluid to be measured. The storage parts may be configured to be detachable from the housing.