Abstract:
A system is disclosed that may comprise: one or more processors of a center node, wherein the center node is a vehicle computer; and memory of the center node, wherein the memory stores instructions executable by the one or more processors, the instructions comprising to: determine a first network comprising the center node and a plurality of member nodes based on a mesh network of the center node and the plurality of member nodes; add at least one virtual node to the first network; and using the first network, exchange cryptographic data between the at least one virtual node, the center node, and the plurality of member nodes.
Abstract:
Systems and methods for managing mobile device control of vehicle functions and subsystems using policy control are disclosed. A computing platform of a vehicle may receive a request, from a mobile application, to access one or more secure vehicle functions and subsystems. The computing platform may retrieve application permissions for the mobile application from a policy table to determine whether to allow the requested access, deny the requested access or to prompt a driver for permission to allow access to the secure vehicle function.
Abstract:
Systems and apparatus are disclosed for a multiple orientation antenna for vehicle communications. An example multiple orientation antenna includes a housing and a first and second set of shutters embedded into the housing. The example multiple orientation antenna also includes a waveguide disposed within the housing defining a first and second set of slot antennas. The slot antennas of the first set of slot antennas are oriented to facilitate horizontal communication. The slot antennas of the second set of slot antennas are oriented to facilitate vertical communication. Additionally, the example multiple orientation antenna includes a rotation motor to rotate the housing.
Abstract:
Systems and methods are disclosed for a pedestrian warning system. An example disclosed method to simulate noise for an electric or noise-dampened vehicle to warning pedestrians includes producing a first sound at a first frequency range from a first sound generator located at a front of the vehicle. The method also includes producing a second sound at a second frequency range from a second sound generator located under the vehicle. Additionally, the example method includes adjusting the acoustic characteristics of the first and second sounds based on vehicle motion data.
Abstract:
A vehicle includes a traction battery, an interface, and at least one processor configured to present, via the interface, a message including a charge-vehicle recommendation for at least one charge station within the drive range, in response to (i) a selected destination for the vehicle lacking a charge facility for the battery and being within a drive range of the vehicle and (ii) a charge station being within the drive range.
Abstract:
Systems and methods are disclosed for a pedestrian warning system. An example disclosed method to simulate noise for an electric or noise-dampened vehicle to warning pedestrians includes producing a first sound at a first frequency range from a first sound generator located at a front of the vehicle. The method also includes producing a second sound at a second frequency range from a second sound generator located under the vehicle. Additionally, the example method includes adjusting the acoustic characteristics of the first and second sounds based on vehicle motion data.
Abstract:
Methods and systems are provided for estimating ambient humidity based on a wet bulb temperature and a dry bulb temperature during precipitation, and estimating ambient humidity based on the dry bulb temperature and not based on wet bulb temperature when precipitation is absent.
Abstract:
Systems and methods are disclosed for a dynamically equalizing receiver. An example disclosed system includes a mobile device and a vehicle. The example mobile device generates a sound profile based on media identifying information. The sound profile specifies equalizer settings for a receiver. The example vehicle includes the receiver. The receiver is communicatively coupled to the mobile device. The example receiver collects the media identifying information, and adjusts the equalizer settings of the receiver as specified by the sound profile.
Abstract:
Example systems and methods for vehicle mode scheduling with learned user preferences are disclosed. The example disclosed method includes monitoring vehicle data when a vehicle changes from a first mode to a second mode. The example method also includes analyzing the vehicle data to identify a preference for the second mode during a driving context. Additionally, the example method includes generating a recommendation on whether to switch to the second mode while traversing a route based on the vehicle data, and the driving context, and presenting the recommendation to the driver.
Abstract:
A system includes a processor configured to receive recorded weather-related observation data from a plurality of vehicles in a building locality. The processor is also configured to combine the received weather-related observation data with remote weather data received from a remote source. Further, the processor is configured to determine a weather pattern developing in the building locality based on the combined weather-related observation data and remote weather data.