Abstract:
An integrated circuit and a method of self-testing the integrated circuit are provided. The method comprises: generating a reference voltage at an output of a reference circuit; initiating a test of the reference circuit during a test mode; determining whether the test of the reference circuit passes; and comparing, if the test of the reference circuit passes, a first voltage with the reference voltage. The disclosed test method provides for more complete testing of the integrated circuit.
Abstract:
An integrated circuit includes a scan chain, a clock divider circuit, and clock selection circuitry. The scan chain includes a plurality of dual edge flip flops, wherein each dual edge flip flop includes a data input, a scan input, a clock input, and data output. The clock divider circuit is coupled to receive a test clock and is configured to divide the test clock to provide a divided test clock. The clock selection circuitry has a first input coupled to receive the divided test clock, a second input coupled to receive a system clock, a control input coupled to receive a scan enable signal, and an output coupled to provide one of the divided test clock and the system clock as a clock signal to the clock inputs of the scan chain based on the scan enable signal.
Abstract:
An active tamper detection circuit with bypass detection is provided. A bypass detection circuit is coupled to an active mesh loop. The bypass detector includes a voltage comparator with a variable hysteresis control circuit and a calibration engine. The bypass detector detects a change in impedance in the mesh when an attacker attempts to bypass the active loop using a wire. As part of a boot-up sequence, the calibration engine runs a hysteresis sweep on the voltage comparator and stores a hysteresis sweep boot-up signature. When bypass protection is enabled, the bypass detector runs a hysteresis sweep of the voltage comparator periodically at a predetermined interval. Each sweep generates a generated signature that is compared to the stored boot-up signature. Any signature mismatch will be signaled as an impedance mismatch, or tamper. The hysteresis step size is also programmable. The calibration engine can make small changes to the boot-up signature to allow for small voltage variations.
Abstract:
A master slave storage circuit can include a first master portion coupled to a first master data storage node and a first slave portion coupled to a first slave data storage node. The first master portion can comprise one of a first master latch or a first master capacitive element coupled to the first master data storage node and the first slave portion comprises one of a first slave latch or a first slave capacitive element coupled to the first slave data storage node. If the first master portion comprises the first master latch, the first slave portion comprises the first slave capacitive element, and if the first master portion comprises the first master capacitive element, the first slave portion comprises the first slave latch.
Abstract:
A system and method for verifying the electrical behavior of a liquid crystal display (LCD) driver circuit connected to LCD segments of an electronic circuit includes generating test patterns for verifying the LCD driver circuit. The LCD driver circuit generates LCD stimuli in the form of electrical current based on the test patterns. The current is applied to front and back planes of each LCD segment. Root mean square (RMS) voltages of each LCD segment are determined and compared with predetermined threshold values to verify the state of each LCD segment.
Abstract:
A method for managing a reset process in a processing system is provided. The method includes enabling a watch dog unit based on a power-on reset (POR) event. A stuck in reset condition indication is received at the watch dog unit and used to determine whether the received reset condition indication corresponds to an unintentional reset condition. If the received reset condition indication is an indication of an unintentional reset condition, a watch dog POR trigger signal is generated and a reset state machine is repeated for system recovery.
Abstract:
A scannable flip-flop circuit and method for low power scan operation are provided. The scannable flip-flop includes a flip-flop for receiving an input signal, and for generating a flip-flop output signal. The scannable flip-flop also includes a voltage selection circuit coupled to the flip-flop. The voltage selection circuit supplies a first voltage to the flip-flop during a first state of a voltage selection signal, and supplies a second voltage to the flip-flop during a second state of the voltage selection signal. A series of scannable flip-flops may be arranged in a scan chain for testing during a scan test mode.