Abstract:
The present disclosure provides a transparent screen including two main surfaces, and out of light of which a wavelength incident on one main surface out of the two main surfaces is 532 nm, a half width of a peak observed in a distribution indicating strength with respect to a diffraction angle of a primary diffraction light emitted from the other main surface out of the two main surfaces is 2 degrees or greater.
Abstract:
Provided is an organic electroluminescent display device that further suppresses reflection of external light when viewed in an oblique direction; a phase difference film; and a circularly polarizing plate. This display device has an organic electroluminescent display panel, and a circularly polarizing plate arranged on the display panel, in which the circularly polarizing plate has a polarizer and a phase difference film, the phase difference film has, from a side of the polarizer, a negative A-plate, and a positive A-plate, the in-plane retardation of the negative A-plate at a wavelength of 550 nm is more than 50 nm and less than 90 nm, and the in-plane retardation of the positive A-plate at a wavelength of 550 nm is 100 to 200 nm, and the angle formed by the in-plane slow axis of the negative A-plate and the in-plane slow axis of the positive A-plate is 45°±10°.
Abstract:
A phosphor-containing film suppresses deterioration of a phosphor and generation of luminescent spots and the reduction in luminance, and a backlight unit. The phosphor-containing film includes: a phosphor-containing layer having a resin layer which has oxygen impermeability and discrete concave portions, and fluorescent regions arranged in the concave portions, and a first substrate film laminated on one surface of the phosphor-containing layer and a second substrate film laminated on the opposing surface, in which the fluorescent regions contain the phosphor that deteriorates through a reaction with oxygen, and a binder, the first substrate film includes a support film and an inorganic layer provided on a surface of the support film on a side facing the phosphor-containing layer, the resin layer has a modulus of elasticity of 0.5 to 10 GPa, and a thickness of the bottom of the concave portion of the resin layer is 0.1 to 20 μm.
Abstract:
An optical film is provided and has retardations satisfying relations (1) to (3): 0≦Re(550)≦10; (1) −25≦Rth(550)≦25; and (2) |I|+|II|+|III|+|IV|>0.5 (nm), (3) with definitions: I=Re(450)−Re(550); II=Re(650)−Re(550); III=Rth(450)−Rth(550); and IV=Rth(650)−Rth(550), wherein Re(450), Re(550) and Re(650) are in-plane retardations measured with lights of wavelength of 450, 550 and 650 nm, respectively; and Rth(450), Rth(550) and Rth(650) are retardations in a thickness direction of the optical film, which are measured with lights of wavelength of 450, 550 and 650 nm, respectively.
Abstract translation:提供了一种光学膜,并具有满足关系式(1)至(3)的延迟:0≦̸ Re(550)≦̸ 10; (1)-25≦̸ Rth(550)≦̸ 25; 和(2)| I | + | II | + | III | + | IV |> 0.5(nm),(3)具有定义:I = Re(450)-Re(550) II = Re(650)-Re(550); III = Rth(450)-Rth(550); 并且IV = Rth(650)-Rth(550),其中Re(450),Re(550)和Re(650)分别是用波长为450,550和650nm的光测量的面内延迟; 和Rth(450),Rth(550)和Rth(650)分别是在450,550和650nm的波长的光下测量的光学膜的厚度方向的延迟。
Abstract:
An optical film includes a cholesteric liquid crystal layer formed in a stripe-shaped pattern in which an optically anisotropic region having optical anisotropy and an optically isotropic region having optical isotropy are alternately disposed, a helical axis of a cholesteric liquid crystal in the optically anisotropic region is oriented in one axial direction tin a plane of the optical film, and the helical axis is oriented in a normal direction t of a boundary surface between the optically anisotropic region and the optically isotropic region.
Abstract:
A thin optical film with high hygrothermal durability and high front contrast, includes cellulose acylate whose degree of substitution of acyl group is from 2.0 to 2.6 and at least one optical performance developer, wherein the cellulose acylate has a mannose content of 0.2% by mass or less, and the optical film has a thickness of 40 μm or thinner and satisfies: MA≧MB×1.1 Formula I CA≧CB×1.1 Formula II wherein, A denotes the depthwise region ranging from one surface up to 2 μm depth of the optical film, and B denotes the depthwise region ranging from the other surface up to 2 μm depth, and MA and MB represent the mannose content in regions A and B; CA and CB represent the content of the optical performance developer in regions A and B; and MA, MB, CA and CB are given in % by mass.
Abstract:
Provided is a new optical element that can be used for various applications. The optical element includes: a liquid crystal layer where a liquid crystal compound is aligned; and a polymer layer that is laminated on the liquid crystal layer, in which the optical element is reversibly switchable between a reference form and a first form where a film thickness distribution of the liquid crystal layer is less than that of the reference form.
Abstract:
An optical apparatus includes a beam splitter that transmits a part of an incidence ray and reflects another part of the incidence ray, a mirror member that includes a mirror surface arranged at a position at which light transmitted through the beam splitter is incident, and a retroreflective member that is arranged at a position at which light specularly reflected on the mirror surface, to be incident on the beam splitter and specularly reflected by the beam splitter is incident.
Abstract:
An optical film is provided and has retardations satisfying relations (1) to (3): (1) 0≦Re(550)≦10; (2) −25≦Rth(550)≦25; and (3) |I|+|II|+|III|+|IV|>0.5 (nm), with definitions: I=Re(450)−Re(550); II=Re(650)−Re(550); III=Rth(450)−Rth(550); and IV=Rth(650)−Rth(550), wherein Re(450), Re(550) and Re(650) are in-plane retardations measured with lights of wavelength of 450, 550 and 650 nm, respectively; and Rth(450), Rth(550) and Rth(650) are retardations in a thickness direction of the optical film, which are measured with lights of wavelength of 450, 550 and 650 nm, respectively.
Abstract:
An optical film is provided and has retardations satisfying relations (1) to (3): 0≦Re(550)≦10; (1) −25≦Rth(550)≦25; (2) and |I|+|II|+|III|+|IV|>0.5 (nm), (3) with definitions: I=Re(450)−Re(550); II=Re(650)−Re(550); III=Rth(450)−Rth(550); and IV=Rth(650)−Rth(550), wherein Re(450), Re(550) and Re(650) are in-plane retardations measured with lights of wavelength of 450, 550 and 650 nm, respectively; and Rth(450), Rth(550) and Rth(650) are retardations in a thickness direction of the optical film, which are measured with lights of wavelength of 450, 550 and 650 nm, respectively.
Abstract translation:提供了一种光学膜,并具有满足关系式(1)至(3)的延迟:0≦̸ Re(550)≦̸ 10; (1)-25≦̸ Rth(550)≦̸ 25; (2)和| I | + | II | + | III | + | IV |> 0.5(nm),(3)定义为:I = Re(450)-Re(550) II = Re(650)-Re(550); III = Rth(450)-Rth(550); 并且IV = Rth(650)-Rth(550),其中Re(450),Re(550)和Re(650)分别是用波长为450,550和650nm的光测量的面内延迟; 和Rth(450),Rth(550)和Rth(650)分别是在450,550和650nm的波长的光下测量的光学膜的厚度方向的延迟。