Abstract:
An information processing apparatus includes a processor and a memory connected to or incorporated in the processor. The processor acquires reference imaging device information corresponding to a position, an imaging direction, and an angle of view of a reference imaging device, and generates the virtual viewpoint image by using the reference imaging device information as a reference, on a condition that an instruction to start generating a virtual viewpoint image based on a plurality of images obtained by imaging an imaging region with a plurality of imaging devices is given.
Abstract:
A data processing apparatus transmits a virtual viewpoint image generated on the basis of a captured image to a device. The data processing apparatus acquires first data regarding a reproduction history and/or registration data of the virtual viewpoint image, and performs control for transmitting second data regarding the virtual viewpoint image to the device on the basis of the acquired first data.
Abstract:
Provided are an imaging device capable of assisting focusing without giving uncomfortable feeling, a focusing assistance method thereof, and a focusing assistance program thereof. In a case where manual focusing is assisted by moving an image sensor, a focus adjustment speed by an imaging lens is detected. In a case where the focus adjustment speed by the imaging lens is reduced to a threshold value or less, the assistance is started by moving the image sensor. At this time, a focusing assistance unit is brought into an in-focus state by controlling the movement of the image sensor such that the sum of the focus adjustment speed by the imaging lens and a focus adjustment speed by the movement of the image sensor is set to a speed equal to or less than the threshold value.
Abstract:
A phase difference AF processing unit (19) calculates, through an operation using a detection signal group SA of phase difference detection pixels (52A) in an AF area (53), a detection signal group SB of phase difference detection pixels (52B), and a detection signal group SN of G pixels 51 in a row between a row including the phase difference detection pixels (52A) and a row including the phase difference detection pixels (52B), a third correlation value corresponding to a value obtained by adding up a first correlation value between the detection signal group SA and the detection signal group SN and a second correlation value between the detection signal group SB and the detection signal group SN, and generates a defocus amount Df1 from the third correlation value. A system control unit (11) drives a focus lens based on the defocus amount Df1.
Abstract:
When reliability of a defocus amount which is calculated using a signal from a region 50A is low, a digital camera expands the phase difference detection target region to the regions 50A, 50B, and 50C. Further, the digital camera calculates a defocus amount using a correlation operation result of an output signal group of pixel cells 31R in an odd numbered column and an output signal group of the pixel cells 31L in an odd numbered column and a correlation operation result of an output signal group of pixel cells 31R in an even numbered column and an output signal group of the pixel cells 31L in an even numbered column, in the regions 50A, 50B, and 50C.
Abstract:
According to the present invention, since a color image for a moving image including that for live view display includes image data on pixel lines including first and second phase difference pixels, phase difference AF can be accurately performed during the moving image taking. A color image for the moving image includes not only the image data on the pixel lines including the first and second phase difference pixels, but also image data on pixel lines that do not include the first and second phase difference pixels and only include normal pixels. Accordingly, the image quality of the color image for the moving image is improved, an image interpolation process can be accurately performed, and reduction in image quality of a taken image (still image and moving image) through the phase difference pixels can be prevented or alleviated.
Abstract:
One aspect of the present invention thinning-reads pixel signals from the multiple pixels according to a thinning pattern from an image pickup element, or extracts pixel signals from the multiple pixels according to the thinning pattern from a color image that is read from the image pickup element and corresponds to the color filter array, and acquires a thinned color image. Then, moving image data is generated on the basis of the thinned color image. Adoption of the thinned color image as a target image to be subjected to moving image processing can facilitate reduction in processing time per frame, and prevent the frame rate from decreasing. Furthermore, thinning-reading pixels from the image pickup element can facilitate reduction in time of reading an image from the image pickup element.
Abstract:
A solid-state image capture element includes a pixel, which receives light of one of a pair of light beams which pass through iris regions of different locations on a photographic lens, and a pixel which receives light of the other, in a pair of said pixels. The pair of pixels are positioned shifted from one another in a direction which intersects the x-axis which is the phase difference direction. The pair includes a plurality of first pairs and second pairs which respectively have mutually inverse location relations with respect to the pixels and the pixels therein. The first pair and the second pair are alternately positioned in either the phase difference detection direction or the direction which is orthogonal thereto.
Abstract:
An image pickup device includes: a color filter having basic array patterns with first and second array patterns disposed symmetrically, wherein the first array pattern has a first filter at the 4 corner and center pixels of a 3×3 pixel square array, a second filter in a line at the horizontal direction center of the square array, and a third filter placed in a line at the vertical direction center of the square array, and the second array pattern has the same placement of the first filter as the first array pattern and has placement of the second filter and placement of the third filter swapped to that of the first array pattern; and phase difference detection pixels placed on pixels corresponding to positions of centers of at least 1 pair of patterns out of 2 pairs of the first array pattern and the second array pattern.
Abstract:
An information processing apparatus includes a processor and a memory connected to or incorporated in the processor. The processor acquires viewpoint information regarding at least one virtual viewpoint, and presents quality information indicating a quality of a virtual viewpoint video that is creatable with the viewpoint information as a reference, on the basis of a plurality of motion picture data obtained by being captured by a plurality of imaging devices.