Abstract:
A liquid crystal display device includes: a first polarizing film; a first retardation region; a liquid crystal cell which includes a liquid crystal layer sandwiched between a pair of substrates, in which liquid crystal molecules in the liquid crystal layer are oriented parallel to surfaces of the pair of substrates at a time of black display; and a second polarizing film, a slow axis of the first retardation region is arranged orthogonally or parallel to a long axis of the liquid crystal molecule at a surface of the liquid crystal layer at a side of the substrate of the liquid crystal cell adjacent to the first retardation region in a state of no application of voltage, the liquid crystal cell operates in a lateral electric field mode, and the first retardation region includes a first retardation layer and a second retardation layer as defined herein.
Abstract:
According to the invention, provided are an optical alignment film composition with which an optical alignment film having excellent aligning properties can be produced, and an optical alignment film, an optical laminate, and an image display device produced using the optical alignment film composition. An optical alignment film composition according to the invention contains a polymer A which has a constitutional unit a1 including a cinnamate group and a low-molecular-weight compound B which has a cinnamate group and has a lower molecular weight than the polymer A.
Abstract:
A cellulose acylate film that contains at least one kind of cellulose acylate that has a substitution degree of an acyl group that contains an aromatic group of from 0.1 to 2.0, or a substitution degree of an acyl group having from 2 to 4 carbon atoms of from 2.0 to 2.6, and has an in-plane retardation at a wavelength of 550 nm Re(550) of from 80 to 350 nm, and the number of bright spots caused from irregular retardation regions having a major axis diameter of from 0.01 to 0.05 mm of 500 or less per 1 cm2 causes less light leakage irrespective of Re of 80 nm or more, so as to enhance the display capability of IPS type and FFS type liquid crystal display devices.
Abstract:
An optical film having a thickness of from 20-60 μm, Re(550) of larger than 80-350 nm, an elastic modulus Em in a direction that is in parallel or perpendicular to one arbitrary edge of the film and provides a maximum elastic modulus of the film, and an elastic modulus Es in a direction that is perpendicular to the direction of Em, with satisfying Em/Es of 1.5-2.5; and satisfying: - 0.14 ≦ log E T 10 ′ - log E T 100 ′ T 10 - T 100 ≦ - 0.02 wherein T10 represents a temperature where E′RT becomes 1/10; T100 represents a temperature where E′RT becomes 1/100; log E′T10 represents log E′ where E′RT becomes 1/10; and log E′T100 represents log E′ where E′RT becomes 1/100, wherein E′ represents a storage modulus of the film measured by dynamic viscoelastic measurement, and E′RT represents the storage modulus of the film at room temperature.
Abstract:
An optical film having a high Re and a low |Rth| is provided. An optical film consists of a composition that includes cellulose acylate having an acyl group including an aromatic group, and satisfies Formula (I) 150 nm≦Re (550)≦350 nm, Formula (II) −50 nm≦Rth (550)≦50 nm, and Formula (III) 0.07 nm≦degree of cross-sectional orientation P2z≦1, Here, Re (550) represents the in-plane retardation at a wavelength of 550 nm, and Rth (550) represents the thickness direction retardation at a wavelength of 550 nm.