Abstract:
A method of producing a labeled antibody, including the steps of: a) allowing silica nanoparticles containing a functional molecule and having a thiol group on a surface thereof, and a linker molecule containing a maleimido group and an amino group, to coexist in a solvent to form a thioether bond between the thiol group and the maleimido group, thereby obtaining functional molecule-containing silica nanoparticles on which the linker molecule is bonded; and b) allowing the functional molecule-containing silica nanoparticles on which the linker molecule is bonded, carbodiimide and an antibody to coexist in an aqueous solvent to form an amide bond between the amino group of the linker molecule and a carboxyl group of the antibody.
Abstract:
Silica particles having a thiol group on a surface thereof, and satisfying the following conditions (a) to (c): (a) a particle diameter is 20 to 1,000 nm; (b) a density of the thiol group on the surface of the silica particles is 0.002 to 0.2 piece/nm2; and (c) a ratio (B/A) in terms of an amount B (piece/particle) of the thiol group existing on the surface of the silica particles to an amount A of sulfur elements in the silica particles (the number of sulfur elements derived from thiol per silica particle) is 0.10 to 0.60.
Abstract:
A metal nanonetwork includes metal nanostructures that are joined by metallic bond. The joined part between the metal nanostructures includes a fillet part. In the joined part between the metal nanostructures, the distance between the central axis of one metal nanostructure and the central axis of another metal nanostructure is smaller than the sum of the radii of both metal nanostructures. The metal nanostructure is a metal nanowire. A first method for producing the metal nanonetwork includes a process of forming an oxide film on the outermost surface of the metal nanostructure, and a process of reducing the oxide film at the joined parts of a plurality of the metal nanostructures to thereby join the metal nanostructures.
Abstract:
A catalyst for synthesizing liquefied petroleum gas according to the present invention includes: a Cu—Zn-based catalytic material; and an MFI-type zeolite catalytic material supporting Pt, in which a ratio of the molar number of SiO2 to the molar number of Al2O3 contained in the MFI-type zeolite catalytic material (molar number of SiO2/molar number of Al2O3) is 20 or more and 60 or less.