Abstract:
Silica particles having a thiol group on a surface thereof, and satisfying the following conditions (a) to (c): (a) a particle diameter is 20 to 1,000 nm; (b) a density of the thiol group on the surface of the silica particles is 0.002 to 0.2 piece/nm2; and (c) a ratio (B/A) in terms of an amount B (piece/particle) of the thiol group existing on the surface of the silica particles to an amount A of sulfur elements in the silica particles (the number of sulfur elements derived from thiol per silica particle) is 0.10 to 0.60.
Abstract:
A test piece for immunochromatography, containing an aggregation inhibiting pad, a conjugate pad, and a membrane, in which the membrane contains a test area for capturing a target substance, the aggregation inhibiting pad contains a desalting agent, and the conjugate pad contains a labeling agent.
Abstract:
A method of detecting a target substance, containing the steps of: incorporating labeling particles into a test liquid containing an analyte; heating the test liquid; irradiating the test liquid with excitation light, and detecting the target substance contained in the test liquid depending on a state of light emission of the labeling particles; wherein an aggregation state of the labeling particles is changed by the heating step; and wherein the labeling particles have a thermoresponsive polymer on a surface of a composite particle containing a magnetic material and a fluorescent material, and further have a biomolecule having properties of binding with the target substance.
Abstract:
An immunochromatography for multi-item detection is provided which contains detecting and measuring fluorescence and light absorption respectively at once with a detection device. The immunochromatography contains using fluorescent particles and light absorbing particles, wherein the fluorescence excitation wavelength of the fluorescent particles and the absorption wavelength of the light absorbing particles are in the same wavelength region; and detecting and measuring, at once, the intensity of reflected light from a test area, the intensity of reflected light from another test area, and the intensity of reflected light from a non-test area other than the test areas.
Abstract:
A metal nanonetwork includes metal nanostructures that are joined by metallic bond. The joined part between the metal nanostructures includes a fillet part. In the joined part between the metal nanostructures, the distance between the central axis of one metal nanostructure and the central axis of another metal nanostructure is smaller than the sum of the radii of both metal nanostructures. The metal nanostructure is a metal nanowire. A first method for producing the metal nanonetwork includes a process of forming an oxide film on the outermost surface of the metal nanostructure, and a process of reducing the oxide film at the joined parts of a plurality of the metal nanostructures to thereby join the metal nanostructures.
Abstract:
A method of producing a labeled antibody, including the steps of: a) allowing silica nanoparticles containing a functional molecule and having a thiol group on a surface thereof, and a linker molecule containing a maleimido group and an amino group, to coexist in a solvent to form a thioether bond between the thiol group and the maleimido group, thereby obtaining functional molecule-containing silica nanoparticles on which the linker molecule is bonded; and b) allowing the functional molecule-containing silica nanoparticles on which the linker molecule is bonded, carbodiimide and an antibody to coexist in an aqueous solvent to form an amide bond between the amino group of the linker molecule and a carboxyl group of the antibody.
Abstract:
A method of producing functional molecule-containing silica nanoparticles on which a biomolecule is bonded, containing the steps of: allowing silica nanoparticles containing a functional molecule and having a thiol group on a surface thereof to coexist with a linker molecule having a maleimido group and a carboxyl group in an aprotic solvent, thereby allowing formation of a thioether bond between the thiol group and the maleimido group, and obtaining functional molecule-containing silica nanoparticles on which the linker molecule is bonded; and allowing the functional molecule-containing silica nanoparticles on which the linker molecule is bonded to coexist with carbodiimide and a biomolecule having an amino group in an aqueous solvent, thereby allowing formation of an amide bond between the carboxyl group active esterified by the carbodiimide, and the amino group of the biomolecule.
Abstract:
The object of the present invention is to provide a lithium transition metal silicate-type cathode active material that shows superior cycle characteristics, and shows little deterioration of discharge capacity even after repeated charge-and-discharge. In the present invention, a cathode active material that is expressed by the general formula Li2-yFe1-xMxSi1-yXyO4 (M=at least one transition metal selected from the group consisting of Mn, Ti, Cr, V, Ni, Co, Cu, Zn, Al, Ge, Zr, Mo, W; X=at least one element selected from the group consisting of Ti, Cr, V, Zr, Mo, W, P, B; 0≦x
Abstract translation:本发明的目的是提供一种具有优异的循环特性的锂过渡金属硅酸盐型阴极活性材料,即使在反复进行充放电之后,放电容量几乎没有劣化。 在本发明中,由通式Li2-yFe1-xMxSi1-yXyO4表示的正极活性物质(M =选自Mn,Ti,Cr,V,Ni,Co,Cu中的至少一种过渡金属 ,Zn,Al,Ge,Zr,Mo,W; X =选自Ti,Cr,V,Zr,Mo,W,P,B中的至少一种元素;0≤x≤1,0 <0.25),并且包含锂过渡金属硅酸盐,其包含具有空间群Pmn21对称性的正交型结构的混合相和具有空间群P21 / n对称性的单斜晶型结构。
Abstract:
The object of the present invention is to provide a method for producing lithium transition metal phosphate with a small particle size and uniform element spatial distribution, which enables continuous and large-scale synthesis. Its solution is as follows: A particulate mixture is synthesized by the spray-combustion method, wherein a mixed solution containing a lithium source, a transition metal source, and a phosphorus source is supplied into a flame along with a combustion-supporting gas and a flammable gas, as a mist-like droplet. It is a method for producing lithium transition metal phosphate-type cathode active material, which further comprises a process of mixing the synthesized particulate mixture with a carbon source, a process of calcining the particulate mixture under inert gas atmosphere to produce an active material aggregate, and a process of pulverizing the active material aggregate.
Abstract:
A fluorescent labeling particle for detecting a target substance, containing a composite particle having a phase containing a magnetic material and a phase containing a fluorescent material, and a thermoresponsive polymer on a surface of the composite particle.