Abstract:
An optical part includes: an optical fiber having a core portion and a cladding portion that is formed around the core portion; a light absorber placed around the optical fiber; and an adhesive member that adheres the light absorber and the optical fiber to each other. Further, the cladding portion includes: a main portion extending along a longitudinal direction and having a main portion cladding diameter; and an input end portion positioned closer to a light input side with respect to the main portion, and an input end face cladding diameter at an input end face of the input end portion is less than the main portion cladding diameter.
Abstract:
An optical module includes a housing including an internal space that has an opening in a substrate mounting surface, an element mounting surface that forms a portion of an inner surface of the internal space, and a waveguide introduction opening that is formed in a side surface intersecting the substrate mounting surface and is opened to the opening of the substrate mounting surface and communicated with the internal space, an optical element that is mounted on the element mounting surface, and an electronic element that is mounted on the element mounting surface and is connected to the optical element. When the substrate mounting surface is mounted on a circuit substrate, an optical waveguide that protrudes from a surface of the circuit substrate is introduced into the internal space through the waveguide introduction opening.
Abstract:
An optical module which includes a housing having a placing portion and an optical input-output portion facing an optical input-output surface of a ferrule; a first fixing portion for fixing the ferrule to the housing in the direction of the Z-axis perpendicular to the placing portion; and a second fixing portion for fixing the ferrule to the housing in the direction of the Y-axis perpendicular to the optical input-output surface, wherein the second fixing portion can change states from the first state to the second state; the first fixing portion fixes the ferrule in the direction of the Z-axis, and does not fix the ferrule in the Z-axis direction when the first fixing portion is at a second position; and the first fixing portion moves from the second position to the first position when the second fixing portion changes its state to a specific state.
Abstract:
A gesture recognition system includes an image capturing device, a memory unit and a processing unit. The image capturing device includes a zoom lens and captures an image frame with a focus length. The memory unit previously saves a lookup table of depths versus sharpness associated with at least one the focus length of the zoom lens. The processing unit is configured to calculate a current sharpness value of at least one object image in the image frame and to obtain a current depth of the object image according to the lookup table.
Abstract:
A substrate assembly includes: a substrate including a first surface facing a first direction, a second surface on a side opposite to the first surface, the second surface facing an opposite direction to the first direction, and an optical transceiver including a first electrical interface, and a heat dissipation portion, the optical transceiver being fixed to the substrate in a state where the first electrical interface and the heat dissipation portion face the opposite direction to the first direction and are aligned in a direction intersecting the first direction; and a first heat dissipation mechanism fixed to the substrate, the first heat dissipation mechanism including a first portion adjacent to the heat dissipation portion in the first direction and thermally connected with the heat dissipation portion in a state where the optical transceiver is fixed to the substrate.
Abstract:
An optical module includes a housing including an internal space that has an opening in a substrate mounting surface, an element mounting surface that forms a portion of an inner surface of the internal space, and a waveguide introduction opening that is formed in a side surface intersecting the substrate mounting surface and is opened to the opening of the substrate mounting surface and communicated with the internal space, an optical element that is mounted on the element mounting surface, and an electronic element that is mounted on the element mounting surface and is connected to the optical element. When the substrate mounting surface is mounted on a circuit substrate, an optical waveguide that protrudes from a surface of the circuit substrate is introduced into the internal space through the waveguide introduction opening.
Abstract:
A prism/lens array (25) in the present invention is a grass prism having an approximately 45 degrees tapered part. A plurality of lenses (31) are provided side by side on the front surface of the prism/lens array (25). A pair of protrusions (33) are formed on both sides of lenses (31) on the surface on which the lenses (31) are provided. The protrusions (33) are formed in the top-bottom direction of the prism/lens array (25) and roughly V-shaped cross sections. Grooves (35) are provided in an inside surface of a prism-securing part (19), in areas corresponding to the protrusions (33). The grooves (35) are shaped such that the protrusions (33) can fit into the grooves; for example, the grooves could have roughly V-shaped cross sections.