Abstract:
An alignment connector for an optoelectronic module can include: a front end having a first gripper arm and a second gripper arm with an alignment connector aperture between the first gripper arm and the second gripper arm; a base having a bottom surface and a receptacle surface; the back end having a first back wall and a second back wall with a back gap therebetween; and a ferrule receptacle extending to a medial region where the alignment connector aperture extends from, and including a portion of the receptacle surface, the ferrule receptacle being defined by a first side wall having a first latch arm and a second side wall having a second latch arm. The alignment connector can be included in a module with a bail or pull-tab. Alternatively, the first gripper arm and second gripper arm can be mounted directly to a module housing.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
Abstract:
An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
Abstract:
An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
Abstract:
An alignment connector for an optoelectronic module can include: a front end having a first gripper arm and a second gripper arm with an alignment connector aperture between the first gripper arm and the second gripper arm; a base having a bottom surface and a receptacle surface; the back end having a first back wall and a second back wall with a back gap therebetween; and a ferrule receptacle extending to a medial region where the alignment connector aperture extends from, and including a portion of the receptacle surface, the ferrule receptacle being defined by a first side wall having a first latch arm and a second side wall having a second latch arm. The alignment connector can be included in a module with a bail or pull-tab. Alternatively, the first gripper arm and second gripper arm can be mounted directly to a module housing.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
Abstract:
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.