Abstract:
Elongated flexible probes can be disposed in holes of upper and lower guide plates of a probe card assembly. Each probe can include one or more spring mechanisms that exert normal forces against sidewalls of holes in one of the guide plates. The normal forces can result in frictional forces against the sidewalls that are substantially parallel to the sidewalls. The frictional forces can reduce or impede movement parallel to the sidewalls of the probes in the holes.
Abstract:
The elongated body of an electrically conductive contact probe can be disposed in a guide hole and can include a patterned region for engaging and riding on a contact region of an inner sidewall of the guide hole as the elongated body moves in the guide hole in response to a force on a tip of the probe. As the patterned region rides the contact region, the tip moves in a lateral pattern that is a function of the surface(s) of the patterned region.
Abstract:
Elongated flexible probes can be disposed in holes of upper and lower guide plates of a probe card assembly. Each probe can include one or more spring mechanisms that exert normal forces against sidewalls of holes in one of the guide plates. The normal forces can result in frictional forces against the sidewalls that are substantially parallel to the sidewalls. The frictional forces can reduce or impede movement parallel to the sidewalls of the probes in the holes.
Abstract:
An electrical connection between an electrically conductive probe on one device and a compliant pad on another device can be formed by piercing the compliant pad with the probe. The probe can contact multiple electrically conductive elements inside the pad and thereby electrically connect to the pad at multiple locations inside the pad.
Abstract:
The elongated body of an electrically conductive contact probe can be disposed in a guide hole and can include a patterned region for engaging and riding on a contact region of an inner sidewall of the guide hole as the elongated body moves in the guide hole in response to a force on a tip of the probe. As the patterned region rides the contact region, the tip moves in a lateral pattern that is a function of the surface(s) of the patterned region.
Abstract:
An electrical connection between an electrically conductive probe on one device and a compliant pad on another device can be formed by piercing the compliant pad with the probe. The probe can contact multiple electrically conductive elements inside the pad and thereby electrically connect to the pad at multiple locations inside the pad.