摘要:
A computing module includes an interface to asynchronously, serially exchange parallel system bus data with one or more other modules of a computer system that includes the computing module. The computing module can asynchronously, serially transfer first parallel bus data to another module of the computer system, and can asynchronously, serially receive second parallel bus data from another module of the computer system.
摘要:
A modular computer system (20) including a universal connectivity station (UCS) (22) interconnected to a plurality of remote modules (30, 32, 34, 36, 38, 42) via a plurality of respective high speed serial links (26, 40) such as based on proprietary Split-Bridge™ technology. The plurality modules, including a processor module (42) which may include core parts including a CPU, memory, AGP Graphics, and system bus interface may be remotely located from each of the other modules, including the UCS (22). The present invention achieves technical advantages wherein each module of the modular computer system (20) appear to each device to be interconnected to the other on a parallel bus since the high speed serial links appear transparent. Preferably, although not necessary, each of the modules including the UCS 22 are based on the PCI bus architecture, or the PCMCIA bus architecture, although other bus architectures are well suited to be incorporated using the present invention. The processor module can be upgraded to change or improve the performance of the modular computer system 20 without requiring any changes to the remaining system, thus drastically improving the price to performance trade-offs of the system. Moreover, the operating system (OS) of each module, including both the software and hardware, do not need to be changed as the entire modular system (20) is based on a common architecture, such as the PCI or Cardbus bus architecture.
摘要:
A modular computer system (20) including a universal connectivity station (UCS) (22) having a processor (42) interconnecting a plurality of physically remote modules including a PDA (36) and Smartphone (38), and a display (34). Each module of the modular computer system (20) appear to each device to be interconnected to the other. The UCS (22) enables the PDA (36) and Smartphone (38) to drive the display (38). The UCS (22) is also connectable to a data network via a network interface (54). External control devices including a keyboard (50) and mouse (52) may also control the UCS (22). The UCS (22) may translate the keyboard inputs to keystrokes, and mouse movements clicks to cursor movements and stylus taps for visually rendering on the PDA and Smartphone.
摘要:
A modular computer system (20) including a universal connectivity station (UCS) (22) interconnected to a plurality of remote modules (30, 32, 34, 36, 38, 42) via a plurality of respective high speed serial links (26, 40) such as based on proprietary Split-Bridge™ technology. The plurality modules, including a processor module (42) which may include core parts including a CPU, memory, AGP Graphics, and system bus interface may be remotely located from each of the other modules, including the UCS (22). The present invention achieves technical advantages wherein each module of the modular computer system (20) appear to each device to be interconnected to the other on a parallel bus since the high speed serial links appear transparent. Preferably, although not necessary, each of the modules including the UCS 22 are based on the PCI bus architecture, or the PCMCIA bus architecture, although other bus architectures are well suited to be incorporated using the present invention. The processor module can be upgraded to change or improve the performance of the modular computer system 20 without requiring any changes to the remaining system, thus drastically improving the price to performance trade-offs of the system. Moreover, the operating system (OS) of each module, including both the software and hardware, do not need to be changed as the entire modular system (20) is based on a common architecture, such as the PCI or Cardbus bus architecture.
摘要:
The present invention achieves technical advantages as a device and system utilizable during actual golf game play configured to obtain information related to a player's golf swing and game performance. This information may include information generated by a sensor(s) located on or within a golf club or worn by the golfer, which information is configured to be sent to a golf appliance, such as a golf glove, an automatic scoring and game statistics apparatus worn by the golfer, or a remotely located monitoring/display unit. These sensors provide data to facilitate assessing a player's swing, to determine a ball strike, determine swing velocity, identify the club used, and other data usable during actual game play. An additional aspect of the invention provides for a golf glove appliance and club grip system for detecting correct hand position as the golfer grips the club during a swing.
摘要:
A golf club and accessory system utilizable during actual golf game play configured to obtain information related to a player's golf swing. This information may include information generated by a sensor(s) located on or within a golf club, which information is configured to be sent to a golf appliance, such as a golf glove, or other appliances used during play. These sensors provide data to facilitate assessing a player's swing, to determine a ball strike, determine swing velocity, identify the club used, or other such data obtainable during actual game play. One aspect of the invention provides for a golf appliance configured to display data relevant to game play and the player's swing obtained from a sensor(s) integral a golf club or integrated into the worn appliance. In another aspect of the invention the golf appliance(s) are configured to only accept input from specified sensor(s) or other appliances, encrypt data, and alert the user of any errors in operation.
摘要:
A device and system utilizable during actual golf game play configured to obtain information related to a player's golf swing. This information may include information generated by a sensor(s) located on or within a golf club, which information is configured to be sent to a golf appliance, such as a golf glove, or other appliances used during play. These sensors provide data to facilitate assessing a player's swing, to determine a ball strike, determine swing velocity, identify the club used, or other such data obtainable during actual game play. One aspect of the invention allows for sensor(s) to be an integral part of a newly manufactured club. Another aspect of the invention allows for existing golf clubs to be retrofitted by an individual with a sensor(s). An additional aspect of the invention provides for power coupling across the sensor(s) golf appliance interface.
摘要:
A bridge accessible by a host processor can expand access over a first bus to a second bus. The first bus and the second bus are each adapted to separately connect to respective ones of a plurality of bus-compatible devices. Allowable ones of the devices include memory devices and input/output devices. The bridge has a link, together with a first and a second interface. The first interface is coupled between the first bus and the link. The second interface is coupled between the second bus and the link. The first interface and the second interface are operable to (a) send information serially through the link in a format different from that of the first bus and the second bus, (b) approve an initial exchange between the first bus and the second bus in response to pending transactions having a characteristic signifying a destination across the bridge, (c) exchange information between the first bus and the second bus according to a predetermined hierarchy giving the first bus a higher level than the second bus, and (d) allow the host processor, communicating through the first bus, to individually address different selectable ones of the bus-compatible devices on the second bus, including memory devices and input/output devices that may be present: (i) using on the first bus substantially the same type of addressing as is used to access devices the first bus, and (ii) without first employing a second, intervening one of the bus-compatible devices on the second bus.
摘要:
A bridge accessible by a host processor can expand access over a first bus to a second bus. The first bus and the second bus are each adapted to separately connect to respective ones of a plurality of bus-compatible devices. Allowable ones of the devices include memory devices and input/output devices. The bridge has a link, together with a first and a second interface. The first interface is coupled between the first bus and the link. The second interface is coupled between the second bus and the link. The first interface and the second interface are operable to (a) send information serially through the link in a format different from that of the first bus and the second bus, (b) approve an initial exchange between the first bus and the second bus in response to pending transactions having a characteristic signifying a destination across the bridge, (c) exchange information between the first bus and the second bus according to a predetermined hierarchy giving the first bus a higher level than the second bus, and (d) allow the host processor, communicating through the first bus, to individually address different selectable ones of the bus-compatible devices on the second bus, including memory devices and input/output devices that may be present: (i) using on the first bus substantially the same type of addressing as is used to access devices the first bus, and (ii) without first employing a second, intervening one of the bus-compatible devices on the second bus.
摘要:
A docking system can give a portable computer access over a first bus in the portable computer to a second bus in a docking station. The first bus and the second bus are each adapted to separately connect to respective ones of a plurality of bus-compatible devices. The docking system has a serial link cooperating with a first and a second interface to act as a single bridge. The first interface is coupled between the first bus and the link. The second interface is coupled between the second bus and the link. The first interface and the second interface are operable to (a) send bus-related information through the link in a format different from that of the first bus and the second bus, and (b) allow the portable computer, communicating through the first bus, to individually address one or more of the bus-compatible devices on the second bus using on the first bus substantially the same type of addressing as is used to access devices on the first bus.