摘要:
A computing module includes an interface to asynchronously, serially exchange parallel system bus data with one or more other modules of a computer system that includes the computing module. The computing module can asynchronously, serially transfer first parallel bus data to another module of the computer system, and can asynchronously, serially receive second parallel bus data from another module of the computer system.
摘要:
A modular computer system (20) including a universal connectivity station (UCS) (22) interconnected to a plurality of remote modules (30, 32, 34, 36, 38, 42) via a plurality of respective high speed serial links (26, 40) such as based on proprietary Split-Bridge™ technology. The plurality modules, including a processor module (42) which may include core parts including a CPU, memory, AGP Graphics, and system bus interface may be remotely located from each of the other modules, including the UCS (22). The present invention achieves technical advantages wherein each module of the modular computer system (20) appear to each device to be interconnected to the other on a parallel bus since the high speed serial links appear transparent. Preferably, although not necessary, each of the modules including the UCS 22 are based on the PCI bus architecture, or the PCMCIA bus architecture, although other bus architectures are well suited to be incorporated using the present invention. The processor module can be upgraded to change or improve the performance of the modular computer system 20 without requiring any changes to the remaining system, thus drastically improving the price to performance trade-offs of the system. Moreover, the operating system (OS) of each module, including both the software and hardware, do not need to be changed as the entire modular system (20) is based on a common architecture, such as the PCI or Cardbus bus architecture.
摘要:
Graphics window systems which utilize graphics pipelines and graphics pipeline bypass buses. Hardware solutions for window relative rendering of graphics primitives, block moving of graphics primitives, transfer of large data blocks, and elimination of pipeline flushing are disclosed. The hardware implementations provided in accordance with the invention are interfaced along the pipeline bypass bus, thereby eliminating gross overhead processor time for the graphics pipeline and reducing pipeline latency. Methods and apparatus provided in accordance with the invention exhibit significant pipeline efficiency and reductions in time to render graphics primitives to the screen system.
摘要:
Methods and apparatus for rendering graphics primitives to display devices in a computer graphics frame buffer system are disclosed. The methods provide an array of addressable video random access memory (VRAM) chips associated to form the graphics frame buffer. The VRAMs in the frame buffer are addressed with coordinate pixel locations on the display device corresponding to locations of the graphics primitives on the display device. The frame buffer is accessed with a graphics rendered according to arbitrarily shaped tiles containing pixels such that the pixels within the tiles have potentially different VRAM addresses.
摘要:
The present invention provides a low-cost computer system which includes a single sharable block of memory that can be independently accessible as graphics memory or main store system memory without performance degradation. Because the “appetite” for main system memory (unlike that of a display memory) is difficult to satisfy, the memory can be addressed by reallocating an unused portion of a display memory for system memory use. Reallocation of the unused display memory alleviates any need to oversize the display memory, yet realizes the cost effectiveness of using readily available memory sizes. Further, reallocation of the graphics memory avoids any need to separately consider both the system memory and the display memory in accommodating worst case operational requirements. In accordance with additional embodiments, improved efficiency of operation can be achieved to enhance concurrency between plural banks of memory when expansion memory is included. The addressable locations of the expansion memory can be mapped to the bottom of the available system address space, and addressable locations of any prior base system memory are moved above the expansion memory space.
摘要:
A low-cost, moderate performance small computer system is provided by allowing a single sharable block of memory to be independently accessible as graphics or main store memory. Allocation of the memory is selected programmably, eliminating the need to have the maximum memory size for each block simultaneously. Performance penalties are minimized by dynamically allocating the memory bandwidth on demand rather than through fixed time slices. A reallocatable memory subsystem enables transparent transfer of memory function of a lower-performance memory such as DRAM to occur in conjunction with a memory upgrade to a higher-performance memory such as VRAM, for example.
摘要:
In a text mode of a display controller, for each character of the text, a plurality of multiple-byte words are stored in a memory buffer. Each multiple-byte word contains an ASCII character code for the character, font attribute information for the character and at least one font line for the character. For each character font line to be displayed on the monitor, a multiple byte word is read. The attribute information and a first character font line are extracted from the multiple byte word. The display controller then constructs a character scan line for the character based on the attribute information and the first character font line. The character scan line may then be displaying on the monitor.
摘要:
Graphics window systems which utilize graphics pipelines and graphics pipeline bypass buses. Hardware solutions for window relative rendering of graphics primitives, block moving of graphics primitives, transfer of large data blocks, and elimination of pipeline flushing are disclosed. The hardware implementations provided in accordance with the invention are interfaced along the pipeline bypass bus, thereby eliminating gross overhead processor time for the graphics pipeline and reducing pipeline latency. Methods and apparatus provided in accordance with the invention exhibit significant pipeline efficiency and reductions in time to render graphics primitives to the screen system.
摘要:
A computing module includes an interface to asynchronously, serially exchange parallel system bus data with one or more other modules of a computer system that includes the computing module. The computing module can asynchronously, serially transfer first parallel bus data to another module of the computer system, and can asynchronously, serially receive second parallel bus data from another module of the computer system.
摘要:
A modular computer system (20) including a universal connectivity station (UCS) (22) interconnected to a plurality of remote modules (30, 32, 34, 36, 38, 42) via a plurality of respective high speed serial links (26, 40) such as based on proprietary Split-Bridge™ technology. The plurality modules, including a processor module (42) which may include core parts including a CPU, memory, AGP Graphics, and system bus interface may be remotely located from each of the other modules, including the UCS (22). The present invention achieves technical advantages wherein each module of the modular computer system (20) appear to each device to be interconnected to the other on a parallel bus since the high speed serial links appear transparent. Preferably, although not necessary, each of the modules including the UCS 22 are based on the PCI bus architecture, or the PCMCIA bus architecture, although other bus architectures are well suited to be incorporated using the present invention. The processor module can be upgraded to change or improve the performance of the modular computer system 20 without requiring any changes to the remaining system, thus drastically improving the price to performance trade-offs of the system. Moreover, the operating system (OS) of each module, including both the software and hardware, do not need to be changed as the entire modular system (20) is based on a common architecture, such as the PCI or Cardbus bus architecture.