摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenous tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenous support tissues, causing them to contract. Pre-cooling and/or pre-heating may induce a temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy gently heats fascia and other collagenated support tissues, causing them to contract. The energy will preferably be applied between a pair of large plate electrodes having cooled flat electrode surfaces. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia.
摘要:
A tissue separator assembly has an elongate tubular member and a tissue separator device located at a distal end of the elongate tubular member. An elongate coupler extends through the lumen of the elongate tubular member and has a distal coupler end. A tissue localization assembly has an elongate member and a localization device located at the distal end of the elongate member. The localization device may be movable from a first, radially-contracted state to a second, radially-expandable state. The distal coupler end of the elongate coupler and the proximal end of the elongate tubular member of the localization assembly are joinable to one another to permit docking of the tissue localization assembly to the tissue separator assembly. Methods of use of this device are also described.
摘要:
A tissue localizing and separating assembly comprises a shaft, having a distal shaft portion, and a tissue separator device extending along the shaft. The tissue separator device has a distal separator part at the distal shaft portion movable between a retracted state, towards the distal shaft portion, and an outwardly extending, operational state, away from the distal shaft portion. A tissue localization assembly has a radially-expandable end. An elongate coupler may be used to dock the tissue localization assembly to the tissue separator device.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent-heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
Apparatus and methods for uniformly distributing coolant within a cryo-ablation device. A nozzle apparatus includes a tubular member having a plurality of angled apertures that induce swirling of coolant streams dispersed through the angled apertures. Coolant swirling round the tubular member and along an inner surface of an inflatable balloon element inflates the balloon element and cryogenically ablate tissue. The swirling action achieved using angled apertures uniformly distributes coolant along the inner surface of the balloon such that the temperatures along an inner surface of the balloon element and ablation of tissue adjacent to the balloon element are substantially uniform.