摘要:
A wireless communication unit (100) comprises a transmitter (120) arranged to transmit an envelope modulated signal. The transmitter (120) comprises a radio frequency power amplifier (124) operably coupled to a logarithmic detector (210, 310) and a bias control circuit (126) arranged to set a direct current bias level of the radio frequency power amplifier (124) via a bias signal. The logarithmic detector (210, 310) is arranged to detect the envelope modulated signal and provide the detected envelope modulated signal to the bias control circuit such that the bias signal applied to the radio frequency power amplifier (124) comprises both a direct current and a low frequency component based on the detected envelope modulated signal. In this manner, the present invention supports a tradeoff of linearity for additional efficiency, as well as providing more margin on adjacent channel power levels, whilst maintaining a good overall power added efficiency.
摘要:
An integrated circuit comprises frequency generation circuitry for controlling a frequency source for an automotive radar system. The frequency generation circuitry comprises a Phase Locked Loop (PLL) arranged to generate a control signal for controlling the frequency source, a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control logic operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of a frequency control signal, such that the PLL generates a Frequency Modulated Continuous Wave (FMCW) control signal.
摘要:
An integrated circuit comprises frequency generation circuitry for controlling a frequency source for an automotive radar system. The frequency generation circuitry comprises a Phase Locked Loop (PLL) arranged to generate a control signal for controlling the frequency source, a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control logic operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of a frequency control signal, such that the PLL generates a Frequency Modulated Continuous Wave (FMCW) control signal.
摘要:
A charge pump circuit comprises a first bipolar transistor device and a second bipolar switching device arranged in a differential pair configuration. A first terminal of each of the first and second bipolar switching devices are coupled to a supply. A second like terminal of each of the first and second bipolar switching devices are coupled together and to ground potential via a pulsed current source. A field effect switching device is also provided and the first terminal of the first bipolar switching device is coupled to the voltage supply via the field effect switching device.
摘要:
An XOR phase detector for a phase-locked loop PLL comprises an XOR gate which has an input for a periodic reference signal and another input connected to a frequency divider of the PLL. A level shifter has a level shifter input connected to an output of the XOR gate and a level shifter output connectable to a voltage-controlled oscillator VCO of the PLL. The level shifter is connectable between low and high voltage providers and has a high level and a low level. The level shifter is arranged to deliver at its output the high level or the low level depending on whether the voltage at the output of the XOR phase detector is low or high. The level shifter further has a setpoint input for setting the high level to a setpoint level.
摘要:
A circuitry for and a method of generating a frequency modulated radar transmitter signal are provided. The circuitry comprises a modulation signal generator for generating a modulation signal having a waveform describing a required frequency modulation of the frequency modulated radar transmitter signal and comprises a PLL circuitry for generating the frequency modulated radar transmitter signal in dependence of the modulation signal. In the PLL circuitry a controllable frequency divider controls the output frequency of the PLL circuitry in dependence of the modulation signal. The PLL circuitry further comprises a phase detector, a controllable oscillator and possibly a low pass filter. The PLL circuitry further comprises a calibration circuitry being configured to control a parameter of at least one of the phase detector and the controllable oscillator to maintain a loop gain of PLL circuitry.
摘要:
An integrated circuit comprises frequency generation circuitry for controlling a frequency source for use in an automotive radar system. The frequency generation circuitry comprises low-path modulation circuitry arranged to generate a first, low-path control signal for providing lower frequency modulation of the frequency source, the low-path modulation circuitry comprising a Phase Locked Loop (PLL) arranged to generate the low-path control signal for controlling the frequency source and a fractional-N divider located within a feedback loop of the PLL, and frequency pattern control module operably coupled to the fractional-N divider and arranged to control the fractional-N divider, by way of at least a first, lower frequency pattern control signal. The frequency generation circuitry further comprises high-path modulation circuitry arranged to generate a second, high-path control signal for providing higher frequency modulation of the frequency source.
摘要:
A wireless communication unit comprises a transmitter having a power amplifier biased by a bias circuit and a controller operably coupled to the bias circuit for setting one or more bias levels of the power amplifier. The bias circuit is a single bias circuit and is configured to provide either a current mode bias control of the power amplifier or a voltage mode bias control of the power amplifier in response to a control signal from the controller. In this manner, a single bias control circuit can be used to support applications that benefit from both current mode bias control and voltage mode bias control of the power amplifier.
摘要:
The output power of an RF power amplifier is controlled using a feedback loop including a differential integrator for controlling the amplifier's bias voltage. The gain of integration in the differential integrator is varied so as to compensate for variations in the derivative of the power amplifier output power versus the bias voltage.
摘要:
A device for regulating the amplitude of a chrominance signal includes a variable gain amplifier having an input receiving a sub-carrier signal, and an output providing a regulated sub-carrier signal. The gain of the amplifier is controlled by two regulation loops. The first regulation loop operates during the duration of the reference burst. The second regulation loop operates during the visible line. Each of these loops include an up/down counter controlled by a clock. A digital-analog converter has an input receiving the output signals from the first and second up/down counters. An output signal from the digital-analog converter is connected to the gain control of the amplifier. The digital-analog amplifier is controlled by another clock.