Abstract:
The heat exchanger of the present invention is capable of easily adjusting temperature of a machining liquid, e.g., slurry, etching liquid. The heat exchanger of the present invention, which adjusts temperature of the machining liquid, comprises a ceramic heat exchanging tube, which is made by baking silicon carbide (SiC).
Abstract:
The abrasive machine of the present invention is capable of controlling a shape of an abrasive face of a small abrasive plate. The abrasive machine comprises: a plate holder holding an abrasive plate; a fixed engaging member being fixed to the plate holder and engaging with the abrasive plate; a first O-ring being provided between the fixed engaging member and the abrasive plate; a second O-ring being provided between the plate holder and the abrasive plate; and a fluid supply-discharge mechanism for supplying a fluid to and discharging the same from a zone enclosed by the abrasive plate, the plate holder and the second O-ring. An outer circumferential face of the abrasive plate is separated from an inner circumferential face of the fixed engaging member.
Abstract:
A method for adjusting temperature of a machining liquid, e.g., slurry, etching liquid, by passing the machining liquid through a heat exchanger. The heat exchanger, which adjusts the temperature of the machining liquid, includes a ceramic heat exchanging tube which is made by baking silicon carbide (SiC).
Abstract:
The method of the present invention cleans abrasive faces of an upper abrasive plate and a lower abrasive plate of an abrasive machine. The method is executed by a cleaning device including: a nozzle for jetting water; a brush for preventing the jetted water from scattering in the air, the brush enclosing the nozzle; and another brush for closing a gap between the preventing brush and an outer edge of the upper abrasive plate, the method is characterized by the steps of: jetting water from the nozzle toward the abrasive face of the upper abrasive plate; moving the nozzle toward the outer edge of the upper abrasive plate; and closing the gap by the closing brush when the gap is formed between the preventing brush and the outer edge of the upper abrasive plate.
Abstract:
The abrasive machine is capable of preventing deformation and bad abrasion of an abrasive cloth, maintaining flatness of an abrasive face of an abrasive plate and improving abrading accuracy. The abrasive machine comprises the abrasive plate and a holding unit for holding a work piece. In the holding unit, an inner head has a first concave section. An outer head has a second concave section. A holding plate is provided in the first concave section. An elastic holding member forms a first chamber. An outer enclosing member is provided to the outer head. An inner enclosing member is provided between the outer enclosing member and the inner head. A pressing member presses the abrasive face of the abrasive plate and encloses the holding plate. An elastic ring member a second chamber. A pressurizing unit pressurizes the chambers so as to press the work piece and the pressing member onto the abrasive face.
Abstract:
In the wafer abrasive machine of the present invention, a gravity center and a rotational axis of a wafer can be corresponded while abrading the wafer and a holding plate can be smoothly moved in a head member. The abrasive machine comprises: the head member including a concave section, in which the holding plate is accommodated; an elastic sheet member suspending the holding plate and being reinforced by a cloth-formed reinforcing member; a space for storing pressure fluid which pushes the holding plate toward the abrasive plate, the space being formed between the elastic sheet member and the concave section; and a plurality of spherical bodies being provided between an outer circumferential face of the holding plate and an inner circumferential face of the concave section, the spherical bodies simultaneously point-contact the both circumferential faces.