摘要:
Embodiments of a dialog system that utilizes a multi-modal input interface for recognizing user input in human-machine interaction (HMI) systems are described. Embodiments include a component that receives user input from a plurality of different user input mechanisms (multi-modal input) and performs certain synchronization and disambiguation processes. The multi-modal input components synchronizes and integrates the information obtained from different modalities, disambiguates the input, and recovers from any errors that might be produced with respect to any of the user inputs. Such a system effectively addresses any ambiguity associated with the user input and corrects for errors in the human-machine interaction.
摘要:
Embodiments of a dialog system that utilizes a multi-modal input interface for recognizing user input in human-machine interaction (HMI) systems are described. Embodiments include a component that receives user input from a plurality of different user input mechanisms (multi-modal input) and performs certain synchronization and disambiguation processes. The multi-modal input components synchronizes and integrates the information obtained from different modalities, disambiguates the input, and recovers from any errors that might be produced with respect to any of the user inputs. Such a system effectively addresses any ambiguity associated with the user input and corrects for errors in the human-machine interaction.
摘要:
A method of receiving input from a user includes providing a surface within reach of a hand of the user. A plurality of locations on the surface that are touched by the user are sensed. An alphanumeric character having a shape most similar to the plurality of touched locations on the surface is determined. The user is audibly or visually informed of the alphanumeric character and/or a word in which the alphanumeric character is included. Feedback is received from the user regarding whether the alphanumeric character and/or word is an alphanumeric character and/or word that the user intended to be determined in the determining step.
摘要:
A method of receiving input from a user includes providing a surface within reach of a hand of the user. A plurality of locations on the surface that are touched by the user are sensed. An alphanumeric character having a shape most similar to the plurality of touched locations on the surface is determined. The user is audibly or visually informed of the alphanumeric character and/or a word in which the alphanumeric character is included. Feedback is received from the user regarding whether the alphanumeric character and/or word is an alphanumeric character and/or word that the user intended to be determined in the determining step.
摘要:
In one embodiment, a method for rendering a route in a 3D virtual environment includes generating with a processor a 3D virtual environment including a plurality of 3D objects, the 3D virtual environment corresponding to a physical region, identifying with the processor a route for navigation through the 3D virtual environment corresponding to a route of travel through the physical region, generating with the processor and a display device a graphical rendering of the 3D virtual environment and the route with a height of the route being increased in regions of the 3D virtual environment where one or more of the plurality of 3D objects occludes a view of route, rendering of the route with partial transparency to provide visibility of objects occluded by the route and/or with navigation information, e.g. animated direction arrow, street names.
摘要:
A method of displaying a navigation map includes preprocessing photorealistic three- dimensional data offline. A location of a vehicle is automatically determined online. A portion of the preprocessed photorealistic three-dimensional data is identified that is associated with objects that are disposed within a geographic area. The geographic area includes the location of the vehicle. A nonphotorealistic image is rendered based on the identified portion of the preprocessed data. The nonphotorealistic image is electronically displayed to a user within the vehicle.
摘要:
In one embodiment, a method for rendering a route in a 3D virtual environment includes generating with a processor a 3D virtual environment including a plurality of 3D objects, the 3D virtual environment corresponding to a physical region, identifying with the processor a route for navigation through the 3D virtual environment corresponding to a route of travel through the physical region, generating with the processor and a display device a graphical rendering of the 3D virtual environment and the route with a height of the route being increased in regions of the 3D virtual environment where one or more of the plurality of 3D objects occludes a view of route, rendering of the route with partial transparency to provide visibility of objects occluded by the route and/or with navigation information, e.g. animated direction arrow, street names.
摘要:
A method of displaying a navigation map includes preprocessing photorealistic three-dimensional data offline. A location of a vehicle is automatically determined online. A portion of the preprocessed photorealistic three-dimensional data is identified that is associated with objects that are disposed within a geographic area. The geographic area includes the location of the vehicle. A nonphotorealistic image is rendered based on the identified portion of the preprocessed data. The nonphotorealistic image is electronically displayed to a user within the vehicle.
摘要:
A method of displaying an electronic map includes receiving map data associated with a plurality of objects that are disposed within a geographic area. The map data is analyzed to thereby determine a state or value of a metric associated with one of the objects. The associated object is rendered in a low density or high density within the map depending upon the state or value of the metric.
摘要:
A method of displaying a navigation map includes determining a route of a vehicle. Three-dimensional data is received. The data is associated with buildings that are disposed within a geographic area. The geographic area includes the route of the vehicle. At least one of the buildings in the data that is adjacent to at least one street of the route is rendered in a first opaque visual style. All of the buildings in the data that are nonadjacent to at least one street of the route are rendered in at least one second visual style different from the first opaque visual style.