摘要:
A grain-oriented electrical steel sheet being a grain-oriented electrical steel sheet containing Si of 0.8 mass % to 7 mass %, Mn of 0.05 mass % to 1 mass %, B of 0.0005 mass % to 0.0080 mass %, each content of Al, C, N, S, and Se of 0.005 mass % or less, and a balance being composed of Fe and inevitable impurities and having a glass coating film made of composite oxide mainly composed of forsterite on the steel sheet surface, in which when glow discharge optical emission spectrometry (GDS) to the surface of a secondary coating film formed on the surface of the glass coating film under a predetermined condition is performed, a peak, of B, in emission intensity having a peak position in emission intensity different from a peak position, of Mg, in emission intensity is obtained and the peak position, of B, in emission intensity from the steel sheet surface is deeper than the peak position, of Mg, in emission intensity.
摘要:
A grain-oriented electrical steel sheet being a grain-oriented electrical steel sheet containing Si of 0.8 mass % to 7 mass %, Mn of 0.05 mass % to 1 mass %, B of 0.0005 mass % to 0.0080 mass %, each content of Al, C, N, S, and Se of 0.005 mass % or less, and a balance being composed of Fe and inevitable impurities and having a glass coating film made of composite oxide mainly composed of forsterite on the steel sheet surface, in which when glow discharge optical emission spectrometry (GDS) to the surface of a secondary coating film formed on the surface of the glass coating film under a predetermined condition is performed, a peak, of B, in emission intensity having a peak position in emission intensity different from a peak position, of Mg, in emission intensity is obtained and the peak position, of B, in emission intensity from the steel sheet surface is deeper than the peak position, of Mg, in emission intensity.
摘要:
A predetermined steel containing Te: 0.0005 mass % to 0.0050 mass % is heated to 1320° C. or lower to be subjected to hot rolling, and is subjected to annealing, cold rolling, decarburization annealing, and nitridation annealing, and thereby a decarburized nitrided steel sheet is obtained. Further, an annealing separating agent is applied on the surface of the decarburized nitrided steel sheet and finish annealing is performed, and thereby a glass coating film is formed. The N content of the decarburized nitrided steel sheet is set to 0.0150 mass % to 0.0250 mass % and the relationship of 2×[Te]+[N]≦0.0300 mass % is set to be established. Note that [Te] represents the Te content and [N] represents the N content.
摘要:
A predetermined steel containing Te: 0.0005 mass % to 0.0050 mass % is heated to 1320° C. or lower to be subjected to hot rolling, and is subjected to annealing, cold rolling, decarburization annealing, and nitridation annealing, and thereby a decarburized nitrided steel sheet is obtained. Further, an annealing separating agent is applied on the surface of the decarburized nitrided steel sheet and finish annealing is performed, and thereby a glass coating film is formed. The N content of the decarburized nitrided steel sheet is set to 0.0150 mass % to 0.0250 mass % and the relationship of 2×[Te]+[N]≦0.0300 mass % is set to be established. Note that [Te] represents the Te content and [N] represents the N content.
摘要:
In a method of manufacturing a grain-oriented electrical steel sheet including a nitriding treatment (step S7) and adopting so-called “low-temperature slab heating”, the finish temperature of finish rolling in hot rolling (step S2) is set to 950° C. or below, the cooling is started within 2 seconds after completion of the finish rolling, and a steel strip is coiled at 700° C. or below. The cooling rate over the duration from the end of finish rolling to the start of coiling is set to 10° C./sec or above. In annealing (step S3) of the hot-rolled steel strip, the heating rate in the temperature range from 800° C. to 1000° C. is set to 5° C./sec or above.
摘要:
In a method of manufacturing a grain-oriented electrical steel sheet including a nitriding treatment (step S7) and adopting so-called “low-temperature slab heating”, the finish temperature of finish rolling in hot rolling (step S2) is set to 950° C. or below, the cooling is started within 2 seconds after completion of the finish rolling, and a steel strip is coiled at 700° C. or below. The cooling rate over the duration from the end of finish rolling to the start of coiling is set to 10° C./sec or above. In annealing (step S3) of the hot-rolled steel strip, the heating rate in the temperature range from 800° C. to 1000° C. is set to 5° C./sec or above.
摘要:
The present invention provides a method of production of grain-oriented electrical steel sheet comprising making a slab heating temperature 1280° C. or less, annealing hot rolled sheet by (a) a process of heating it to a predetermined temperature of 1000 to 1150° C. to cause recrystallization, then annealing by a temperature lower than that of 850 to 1100° C. or by (b) decarburizing in annealing the hot rolled sheet so that a difference in amounts of carbon of the steel sheet before and after annealing the hot rolled sheet becomes 0.002 to 0.02 mass % and performing the heating in the temperature elevation process of the decarburization annealing under conditions of a heating rate of 40° C. or more, preferably 75 to 125° C./s while the temperature of the steel sheet is in a range from 550° C. to 720° C. and utilizing induction heating for rapid heating in the temperature elevation process of decarburization annealing.
摘要:
The present invention provides a method of production of grain-oriented electrical steel sheet comprising making a slab heating temperature 1280° C. or less, annealing hot rolled sheet by (a) a process of heating it to a predetermined temperature of 1000 to 1150° C. to cause recrystallization, then annealing by a temperature lower than that of 850 to 1100° C. or by (b) decarburizing in annealing the hot rolled sheet so that a difference in amounts of carbon of the steel sheet before and after annealing the hot rolled sheet becomes 0.002 to 0.02 mass % and performing the heating in the temperature elevation process of the decarburization annealing under conditions of a heating rate of 40° C. or more, preferably 75 to 125° C./s while the temperature of the steel sheet is in a range from 550° C. to 720° C. and utilizing induction heating for rapid heating in the temperature elevation process of decarburization annealing.
摘要:
A surface temperature of a slab is decreased down to 600° C. or lower between start of continuous casting (step S2) and start of slab reheating (step S3). The surface temperature of the slab is held at 150° C. or higher between the start of the continuous casting (step s2) and the start of the slab reheating (step S3). The surface temperature of the slab in the slab reheating (step S3) is set to not lower than 1080° C. and not higher than 1200° C.
摘要:
The present invention provides a method for producing a grain-oriented silicon steel sheet not having inorganic mineral films by using an annealing separator capable of preventing the inorganic mineral films composed of forsterite (Mg2SiO4), and so on, from forming during final annealing, comprising the steps of decarburization annealing followed by coating of annealing separator and final annealing, wherein alumina powder calcined at a calcination temperature of 900 to 1,400° C., or further having a BET specific surface area of 1 to 100 m2/g, an oil absorption of 1 to 70 ml/100 g, and/or having a gamma ratio of 0.001 to 2.0, is used as the annealing separator. Magnesia having a BET specific surface area of 0.5 to 5 m2/g may be added to said alumina powder.