摘要:
A method for generating layout data of a semiconductor integrated circuit includes applying optical proximity correction conditions to cells so as to generate cell patterns, selecting cell patterns to correspond cells, based on layout information of cells along a specified signal propagating path; calculating delay times for the signal propagating path for combinations of cell patterns; selecting a combination of cell patterns, based on lengths of the calculated delay times and the allowable delay time; and generating layout data of the signal propagating path using the selected combination.
摘要:
A method for generating layout data of a semiconductor integrated circuit includes applying optical proximity correction conditions to cells so as to generate cell patterns, selecting cell patterns to correspond cells, based on layout information of cells along a specified signal propagating path; calculating delay times for the signal propagating path for combinations of cell patterns; selecting a combination of cell patterns, based on lengths of the calculated delay times and the allowable delay time; and generating layout data of the signal propagating path using the selected combination.
摘要:
In an LED2 having a directionality in an emission direction of emitted light, light emitted from a light emitting surface of the LED 2 is refracted by a semi-cylindrical concave lens 3 to be enlarged in the circumference direction of an optical axis of a headlight 1; thus, even when the LED2 is applied to a headlight that is constituted by optical members that are similar to optical members that are compatible with conventional light sources having no directionality, such as an incandescent lamp, a discharge lamp and the like, it can be used as a light source for headlight that is capable of illuminating the right and left directions ahead of a vehicle with a sufficient brightness.
摘要:
With an automatic layout method, a first line having a first line width is generated in a prescribed direction. A second line having a second line width and extending at an oblique angle with respect to the first line is generated, so that the second line terminates at an end portion of the first line with an overlapped area. One or more VIA patterns are read out of a database according to the shape of the overlapped area. The VIA patterns are placed in the overlapped area, so that one of the VIA patterns is located at the intersection of the center lines of the first and second lines. The VIA pattern is a combination of parallelograms, including squares and rectangles.
摘要:
A control-signal distributing method used in a wiring-pattern network such that a control signal is supplied from root driver cells via repeating buffer cells to terminal cells. The method comprises the steps of: grouping the terminal cells into clusters containing at least one of the terminal cells, forming a binary-tree-shaped wiring pattern path where the root driver cells are root nodes and the clusters are leaf nodes, inserting the repeating buffer cells into the wiring pattern path at which delay time required for control signal transmission in the binary-tree-shaped path is minimized, calculating first delay amounts in a signal path defined from a branch node at a low level of the binary-tree-shaped path to the leaf nodes, setting physical positions of the branch nodes such that a difference among the calculated first delay amounts is minimized, separating the overlapped terminal cells from each other on the binary-tree-shaped path by updating previous information about a circuit connection when the repeating buffer cells are inserted and by correcting arrangement information about terminal cell positions adjacent to the buffer cells, determining a final wiring-pattern path within each of the clusters based upon the corrected arrangement information, calculating second delay amounts in the clusters based on the finally determined wiring-pattern path, determining respective branch node positions based on the second delay amounts, and determining a final wiring-pattern path among the branch nodes.
摘要:
A clock-signal distributing method used in a wiring-pattern network such that a clock signal is supplied from root driver cells via repeating buffer cells to terminal cells. The method comprises the steps of: grouping the terminal cells into clusters containing at least one of the terminal cells, forming a binary-tree-shaped wiring pattern path where the root driver cells are root nodes and the clusters are leaf nodes, inserting the repeating buffer cells into the wiring pattern path at which delay time required for clock signal transmission in the binary-tree-shaped path is minimized, calculating first delay amounts in a signal path defined from a branch node at a low level of the binary-tree-shaped path to the leaf nodes, setting physical positions of the branch nodes such that a difference among the calculated first delay amounts is minimized, separating the overlapped terminal cells from each other on the binary-tree-shaped path by updating previous information about a circuit connection when the repeating buffer cells are inserted and by correcting arrangement information about terminal cell positions adjacent to the buffer cells, determining a final wiring-pattern path within each of the clusters based upon the corrected arrangement information, calculating second delay amounts in the clusters based on the finally determined wiring-pattern path, determining respective branch node positions based on the second delay amounts, and determining a final wiring-pattern path among the branch nodes.
摘要:
A computer-assisted automatic wiring method is presented for logic LSI substrates wherein channel boundary terminals are defined on the boundary line of the first and second channels forming a T-shaped crossing region between the function blocks arranged on a substrate after global wiring process. These channel boundary terminals are roughly divided into the first and second terminal groups there may remain channel boundary terminals which do not belong to any one of the groups. The first terminal group includes terminals intersecting wirings which tend to run along the first direction in the second channel, which corresponds to a top bar of the letter "T". The second terminal group includes terminals intersecting wirings which have tend to run along the second direction opposite to the first direction in said second channel. A pair of channel boundary terminals is sequentially selected from the first and second groups. Typically, the same wiring track is assigned to two wirings associated with the selected each pair of terminals in the second channel.
摘要:
A through hole that is slightly larger than a size of a rear end of a transformer container is formed in a rear cover constituting a part of an external wall of a starting circuit unit. The transformer container houses therein a transformer and constitutes a transformer portion. The transformer portion is assembled such that a rear end of the transformer container projects from the through hole. This allows the transformer container to constitute a part of the external wall of the starting circuit unit.
摘要:
A semiconductor integrated circuit includes a function block arranged on a substrate, a first buffering cell arranged adjacent to a first side of the function block, a second buffering cell arranged adjacent to a second side adjacent to the first side of the function block, and signal wiring passing over the function block obliquely relative to the first side and the second side, connecting the first buffering cell and the second buffering cell.
摘要:
A method for distributing clocks to flip-flop circuits which constitute a logic circuit includes obtaining a timing slack of a first minimum delay time with respect to a minimum delay constraint time and a timing slack of a first maximum delay time with respect to a maximum delay constraint time for a clock in an input path to a flip-flop circuit, obtaining a timing slack of a second minimum delay time with respect to a minimum delay constraint time and a timing slack of a second maximum delay time with respect to a maximum delay constraint time for a clock in an output path from all the flip-flop circuits which receive the clocks from a clock terminal directly and obtaining a delay value which maximizes a minimum value of each of the first and second minimum delay time and maximum delay time of timing slacks.