摘要:
The present invention provides a laminated ceramic capacitor having good temperature characteristics, and suitable for attaining miniaturization, large capacitance and low production cost besides having high reliability in the high temperature load test, wherein a plurality of inner electrodes are formed in a ceramic sintered body comprising a reduction resistant dielectric ceramic in which grains having a core-shell structure and grains having a homogeneous structure are mixed together, and wherein outer electrodes are formed on the outer surfaces of the ceramic sintered body, the area ratio between the total area of the grains having the core-shell structure and the total area of the grains having the homogeneous structure being adjusted within a the range of about 2:8 to 4:6 when a cross section is observed along an arbitrary direction of the ceramic sintered body.
摘要:
There is provided a highly reliable laminated ceramic electronic part in which delamination or crack can be suppressed from occurring during a sintering process even if a number of lamination of internal electrodes is increased and a thickness of the ceramic layer is reduced and which excels in thermal shock resistance. The laminated ceramic electronic part is constructed so as to satisfy the following requirements of that a thickness of the ceramic layer is 10 .mu.m or less; a number of lamination of the internal electrodes is 200 or more; a ratio of a thickness of the internal electrode to the thickness of the ceramic layer (thickness of internal electrode/thickness of ceramic layer) is 0.10 to 0.40; and a ratio of a volume of the internal electrode to a volume of the ceramic element (volume of internal electrodes/volume of ceramic element) is 0.10 to 0.30.
摘要:
A sorting method of monolithic ceramic capacitors in which high reliable sorting can be efficiently achieved based on measuring an insulating resistance involves first performing a burn-in process, which applies not less than double of the rated voltage at the maximum working temperature to a monolithic ceramic capacitor. Thereafter, a high temperature insulation resistance measuring process, which involves measuring an insulation resistance while applying not less than the rated voltage at a temperature of not less than 70° C. to the monolithic ceramic capacitor, is performed so that monolithic ceramic capacitors having abnormal insulation resistances are eliminated. Preferably, the direction of applied voltage in the burn-in process agrees with the direction of applied voltage in the high temperature insulation resistance measuring process.
摘要:
A monolithic capacitor includes a plurality of monolithic ceramic capacitor elements provided with external electrodes at both ends thereof, solder layers arranged on the entire surfaces of the external electrodes of the monolithic ceramic capacitor elements, and metal terminals electrically connected to the external electrodes of the monolithic ceramic capacitor elements. The monolithic ceramic capacitor elements are joined to each other by the solder layers and are stacked on each other. The external electrodes of the monolithic ceramic capacitor elements are electrically connected to each other by the solder layers.
摘要:
A ceramic electronic component includes at least one component body having two end faces opposing each other and side faces connecting the two end faces, and terminal electrodes formed on the component body. Each of the terminal electrodes extends from each end face to edge portions of each side face of the component body. Each of the terminal electrodes includes a metal layer formed on at least each end face of the component body, a conductive resin layer for covering at least portions of the side faces of the component body, and a metal plating film covering the outer surface of the terminal electrode. The conductive resin layer extends from the metal layer including the edge of the metal layer to the portions of the side faces, and includes a conductive resin containing metal powder and resin. The thickness of the conductive resin layer above the side faces is at least about 10 &mgr;m.
摘要:
An electronic multilayer ceramic component is disclosed which is less susceptible to having a crack or delamination in a sintered ceramic block and has high thermal shock resistance, high humidity resistance, and high reliability. Dimensional parameters EW, WG, T, and G of the electronic multilayer ceramic component are determined such that the following conditions are satisfied: WG/EW≧0.3; and T/G≦7.0, where EW is the width of inner electrodes, WG is the width of a side gap region between the ends of the inner electrodes and one of side faces of a sintered ceramic block, T is the thickness of a region in which the plurality of inner electrodes are laminated, and G is the thickness of one of the outermost ceramic layers parallel to the plurality of inner electrodes and located outside the region in which the plurality of inner electrodes are laminated.
摘要:
In the temperature of 70-140 degrees C., the burn-in process of applying a voltage to monolithic ceramic capacitors so that the strength of the electric field applied between the internal electrodes opposing each other may be 7 30 kV/mm is performed. Subsequently, the insulation resistance of the monolithic ceramic capacitor is measured. The monolithic ceramic capacitors are sorted based on the insulation resistance measured during this insulation-resistance measurement process. In this case, it is sufficient to apply the burn-in process for 2-300 seconds.
摘要:
The present invention provides a reliable ceramic electronic component in which cracks are hardly generated in the ceramic sintered body when a heat impact is applied or even when a stress caused by bending of a printed circuit board after packaging is applied, wherein inner electrodes are disposed in the ceramic sintered body, and wherein a first and second outer electrodes are formed so as to cover the first and second end faces, the first and second outer electrodes comprising electrode cover members extending to the upper face and lower face, up to both side faces of the ceramic sintered body, and the distance e and the distance Lg satisfying the relation of 1.5×Lg≦e≦3.5×Lg, where e denotes a distance between the outermost side edge of the outer electrode and the inner side edge of the electrode cover member of the outer electrode, and Lg denotes the distance between the outermost side edge of the outer electrode and the tip of the inner electrode electrically connected to the outer electrode.
摘要翻译:本发明提供了一种可靠的陶瓷电子部件,其中当施加热冲击时或陶瓷烧结体中几乎不产生裂纹,或者当施加包装后印刷电路板的弯曲引起的应力时,内部电极设置在 陶瓷烧结体,并且其中形成第一和第二外部电极以覆盖第一和第二端面,第一和第二外部电极包括延伸到上表面和下表面的电极盖构件,直到两个侧面 ,距离e和距离Lg满足1.5×Lg <= e <= 3.5×Lg的关系,其中e表示外电极的最外侧边缘与电极的内侧边缘之间的距离 外部电极的盖构件,Lg表示外部电极的最外侧边缘与内部电极的与前述电极连接的内部电极的前端之间的距离 电极。
摘要:
A ceramic electronic component includes a ceramic electronic component body having two end faces opposing each other, side faces connecting the two end faces, and terminal electrodes formed on each end face; and terminal members, each including a metal being soldered to one of the terminal electrodes. Each of the terminal electrodes includes a metal layer formed only on the end face, a conductive resin layer formed on the metal layer, the conductive resin layer including metal powder and resin, and a plating film on the conductive resin layer.
摘要:
In a capacitor body of a multilayer capacitor, one second capacitor portion is sandwiched between two first capacitor portions. An ESR is controlled by setting a width of lead portions of third and fourth internal electrodes disposed in the second capacitor portion to be less than that of lead portions of first and second internal electrodes disposed in the first capacitor portions and by changing ratios between the first and second capacitor portions in the width of the lead portions and in the number of stacked internal electrodes. In the first capacitor portions, current paths from the internal electrodes to an external terminal electrode are widely distributed so that the first capacitor portions have a relatively low ESL, and accordingly, the ESL of the entire multilayer capacitor is reduced.