Abstract:
A polyester, including ethylene 2,5-furandicarboxylate units, has an intrinsic viscosity of at least 0.45 d L/g, and has a relative content of carboxylic acid end groups, expressed as the fraction of the molar amount of carboxylic acid end groups divided by the sum of the molar amounts of hydroxyl end groups and carboxylic acid end groups in the range of 0.10 to 0.70. The polyester can be prepared with a method wherein a starting mixture comprising 2,5-furandicarboxylic acid and ethylene glycol is subjected to esterification and subsequent polycondensation at reduced pressure when the molar ratio of 2,5-furandicarboxylic acid to ethylene glycol in the starting mixture is 1:1.01 to 1:1.15, where water, that is formed during the reaction between 2,5-furandicarboxylic acid and ethylene glycol, and some ethylene glycol are removed in a distillation system, and where ethylene glycol that is removed with water, is separated from water and at least partly recycled.
Abstract:
Benzene derivatives of the formula (I); wherein R1 and R2, are the same or different and independently are selected from the group consisting of hydrogen, alkyl, aralkyl, —CHO, —CH2OR3, —CH(OR4)(OR5) and —COOR6, wherein R3, R4 and R5 are the same or different and are selected from hydrogen, alkyl, aryl, alkaryl, aralkyl, alkylcarbonyl or arylcarbonyl, or wherein R4 and R5 together form an alkylene group and wherein R6 is selected from hydrogen, alkyl and aryl, are prepared in a process, which comprises: reacting a furan derivative of formula (II): wherein R1 and R2 have the meanings above, with ethylene under cycloaddition reaction conditions in the presence of an acid solvent to produce the benzene derivative, wherein the acid solvent is a carboxylic acid and is present in a weight ratio acid solvent to furan derivative from 1:1 to 250:1.
Abstract:
A process for preparing a polyester having 2,5-furandicarboxylate units includes subjecting a starting composition including 2,5-furandicarboxylic acid and an aliphatic diol to esterification conditions to produce an ester composition and contacting the ester composition with a germanium containing solution at polycondensation conditions to produce a polyester including 2,5-furandicarboxylate units, and polyester including 2,5-furandicarboxylate units including of from 5 to 100 ppm of germanium and having a number average molecular weight of at least 30 kg/mol.
Abstract:
An acid composition comprising 2-formyl-furan-5-carboxylic acid and 2,5-furandicarboxylic acid is purified in a process which comprises; contacting the acid composition with an alcohol to obtain an esterified composition; and separating the ester of 2-formyl-furan-5-carboxylic acid from the esterified composition to obtain a purified esterified product; and contacting the purified esterified composition with water for saponification or hydrolysis, to obtain a product composition, comprising 2,5-furandicarboxylic acid and a reduced amount of 2-formyl-furan-5-carboxylic acid.
Abstract:
A process for producing a polyester having 2,5-furandicarboxylate units includes: a) providing or producing a starting composition including 2,5-furandicarboxylic acid, an aliphatic diol and a suppressant for suppressing ether formation between the aliphatic diol molecules, b) subjecting the starting composition to esterification conditions to produce an ester composition, and c) contacting the ester composition with a germanium containing catalyst at polycondensation conditions to produce a polyester including 2,5-furandicarboxylate units, where the suppressant includes amines and lithium hydroxide.
Abstract:
A polyester including poly(ethylene 2,5-furandicarboxylate is prepared by esterification of a starting mixture including 2,5-furandicarboxylic acid and ethylene glycol to form an ester composition, and by subjecting the ester composition thus obtained to polycondensation at reduced pressure in the presence of a polycondensation catalyst to obtain a polycondensate. The mixture is reacted under conditions such that the esterification potential as defined by Esterification Potential (EsPo)=(MR−1)2*PH2O(T), where MR represents the molar ratio of ethylene glycol over 2,5-furandicarboxylic acid, MR being greater than 1; PH2O(T) represents the pure component vapor pressure (in bar) of water at temperature T, which is the final reaction temperature in the esterification mixture before the pressure is reduced to effect the polycondensation, is less than 0.8.
Abstract:
A polyester, including ethylene 2,5-furandicarboxylateunits, also includes diethylene glycol residues, the content of which is less than 0.045, in moles per mole of 2,5-furandicarboxylate moieties. The polyester composition can be prepared with a method where a starting mixture is subjected to esterification of 2,5-furandicarboxylic acid or transesterification of an ester thereof with ethylene glycol in the presence of a basic compound and/or an ammonium compound capable of suppressing the formation of diethylene glycol.
Abstract:
A polyester, including ethylene 2,5-furandicarboxylateunits, also includes diethylene glycol residues, the content of which is less than 0.045, in moles per mole of 2,5-furandicarboxylate moieties. The polyester composition can be prepared with a method where a starting mixture is subjected to esterification of 2,5-furandicarboxylic acid or transesterification of an ester thereof with ethylene glycol in the presence of a basic compound and/or an ammonium compound capable of suppressing the formation of diethylene glycol.
Abstract:
A polyester including poly(ethylene 2,5-furandicarboxylate is prepared by esterification of a starting mixture including 2,5-furandicarboxylic acid and ethylene glycol to form an ester composition, and by subjecting the ester composition thus obtained to polycondensation at reduced pressure in the presence of a polycondensation catalyst to obtain a polycondensate. The mixture is reacted under conditions such that the esterification potential as defined by Esterification Potential (EsPo)=(MR−1)2*PH2O(T), where MR represents the molar ratio of ethylene glycol over 2,5-furandicarboxylic acid, MR being greater than 1; PH2O(T) represents the pure component vapor pressure (in bar) of water at temperature T, which is the final reaction temperature in the esterification mixture before the pressure is reduced to effect the polycondensation, is less than 0.8.
Abstract:
Benzene derivatives of the formula (I); wherein R1 and R2, are the same or different and independently are selected from the group consisting of hydrogen, alkyl, aralkyl, —CHO, —CH2OR3, —CH(OR4)(OR5) and —COOR6, wherein R3, R4 and R5 are the same or different and are selected from hydrogen, alkyl, aryl, alkaryl, aralkyl, alkylcarbonyl or arylcarbonyl, or wherein R4 and R5 together form an alkylene group and wherein R6 is selected from hydrogen, alkyl and aryl, are prepared in a process, which comprises: reacting a furan derivative of formula (II): wherein R1 and R2 have the meanings above, with ethylene under cycloaddition reaction conditions in the presence of an acid solvent to produce the benzene derivative, wherein the acid solvent is a carboxylic acid and is present in a weight ratio acid solvent to furan derivative from 1:1 to 250:1.