Abstract:
A fiber comprising polyethylene-2,5-furan-dicarboxylate, is prepared by melt spinning in a process wherein a molten composition comprising polyethylene-2,5-furan-dicarboxylate having an intrinsic viscosity of at least 0.55 dl/g, determined in dichloroacetic acid at 25° C., is passed through one or more spinning openings to yield molten threads; wherein the molten threads are cooled to below the melting temperature of the composition to yield spun fibers; and wherein the spun fibers are drawn to a linear density in the range of 0.05 to 2.0 tex per fiber. The invention also proves a fiber comprising polyethylene-2,5-furan-dicarboxylate having a linear density of 0.05 to 2.0 tex, wherein the polyethylene-2,5-furan-dicarboxylate has an intrinsic viscosity of at least 0.45 dl/g, determined in dichloroacetic acid at 25° C.
Abstract:
A polyester-containing object, such as an injection stretch blow molded bottle, a biaxially oriented film or a drawn fiber, is made from melt-processing poly(ethylene-2,5-furandicarboxylate). The poly(ethylene-2,5-furandicarboxylate) has a number average molecular weight of at least 25,000, as determined by GPC based on polystyrene standards, and includes an antimony catalyst.
Abstract:
A polyester, including ethylene 2,5-furandicarboxylate units, has an intrinsic viscosity of at least 0.45 d L/g, and has a relative content of carboxylic acid end groups, expressed as the fraction of the molar amount of carboxylic acid end groups divided by the sum of the molar amounts of hydroxyl end groups and carboxylic acid end groups in the range of 0.10 to 0.70. The polyester can be prepared with a method wherein a starting mixture comprising 2,5-furandicarboxylic acid and ethylene glycol is subjected to esterification and subsequent polycondensation at reduced pressure when the molar ratio of 2,5-furandicarboxylic acid to ethylene glycol in the starting mixture is 1:1.01 to 1:1.15, where water, that is formed during the reaction between 2,5-furandicarboxylic acid and ethylene glycol, and some ethylene glycol are removed in a distillation system, and where ethylene glycol that is removed with water, is separated from water and at least partly recycled.
Abstract:
A furan-based polyamide is prepared by the following steps: (1) preparing a furan-based oligomer of formula (1) H2N—R—(NH—CO—F—CO—NH—R)n—NH2 (1) where R is a hydrocarbon moiety and F is a furan (cyclo-C4H2O) moiety and n represents the average degree of oligomerization, and where n is within the range of 1 to 10 by reacting 2,5-furandicarboxylic acid or its derivative with a diamine at a temperature of at most 100° C.; (2) contacting the oligomer of step (1) with a bifunctional linker selected from an acid or a derivative thereof where the acid is furandicarboxylic acid or a non-aromatic dicarboxylic acid; provided that if the hydrocarbon moiety R is aromatic, then the bifunctional linker is an aromatic dicarboxylic acid or a derivative thereof, at a mole ratio of the oligomer to the difunctional linker within the range of 0.8 to 1.5 at polycondensation conditions, and (3) isolating the resulting polyamide.
Abstract:
Benzene derivatives of the formula (I); wherein R1 and R2, are the same or different and independently are selected from the group consisting of hydrogen, alkyl, aralkyl, —CHO, —CH2OR3, —CH(OR4)(OR5) and —COOR6, wherein R3, R4 and R5 are the same or different and are selected from hydrogen, alkyl, aryl, alkaryl, aralkyl, alkylcarbonyl or arylcarbonyl, or wherein R4 and R5 together form an alkylene group and wherein R6 is selected from hydrogen, alkyl and aryl, are prepared in a process, which comprises: reacting a furan derivative of formula (II): wherein R1 and R2 have the meanings above, with ethylene under cycloaddition reaction conditions in the presence of an acid solvent to produce the benzene derivative, wherein the acid solvent is a carboxylic acid and is present in a weight ratio acid solvent to furan derivative from 1:1 to 250:1.
Abstract:
A process for the preparation of a ring-hydrogenated alkyl furfuryl ether of the general formula (I) or a mixture of such ethers: (I) R″-TF—CH2-O—R where TF represents a 2,5-disubstituted tetrahydrofuran ring, where each R independently represents a hydrocarbyl group having from 1 to 20 carbon atoms and where each R″ independently represents a methyl group, a hydroxymethyl group, the product of an aldol condensation reaction or an alkoxymethyl group of the general formula (II): (II) —CH2-O—R′ where each R′ independently represents a hydrocarbyl group having from 1 to 20 carbon atoms, the process including the step of reacting a 5-(alkoxymethyl)furfural of the general formula (III) or a 2,5-bis(dialkoxymethyl)furan of the general formula (IV) under hydrogenation conditions: (III) R′−O—CH2-F—CH═O (IV) R′—O—CH2-F—CH2-O—R″ to form said ring-hydrogenated alkyl furfuryl ether of the general formula (I) or a mixture of said ethers wherein F represents a 2,5-disubstituted furan ring, and R′, and R″ have the definitions as described above.
Abstract:
A process for the conversion of solid lignocellulosic material containing hemicellulose, cellulose and lignin, includes (a) hydrolyzing, at a temperature equal to or less than 40° C. at least part of the hemicellulose and at least part of the cellulose of the solid lignocellulosic material with an aqueous hydrochloric acid solution, containing in the range from equal to or more than 40.0 wt. % to equal to or less than 51.0 wt. % hydrochloric acid, based on the combined weight amount of water and hydrochloric acid in the aqueous hydrochloric acid solution; yielding a hydrochloric acid-containing, aqueous hydrolysate solution; (b) separating the hydrochloric acid-containing, aqueous hydrolysate solution from the lignin; and (c) heating at least part of the hydrochloric acid-containing, aqueous hydrolysate solution to a temperature equal to or more than 60° C., yielding a product solution containing 5-(chloromethyl)furfural, and extracting the 5-(chloromethyl)furfural from the product solution into an extraction solvent.
Abstract:
A process for preparing a polymer having a 2,5-furandicarboxylate moiety within the polymer backbone, and having a number average molecular weight of at least 25,000, includes a transesterification step, a polycondensation step, a drying and/or crystallizing step, and a step where the polymer is subjected to post condensation conditions, and to a polyester-containing bottle or film or fiber-containing woven or non-woven object made from melt-processing poly(ethylene-2,5-furandicarboxylate), where the poly(ethylene-2,5-furandicarboxylate) is obtainable by the process of the invention.
Abstract:
A process for the preparation of a ring-hydrogenated alkyl furfuryl ether of the general formula (I) or a mixture of such ethers: (I) R″-TF—CH2-O—R where TF represents a 2,5-disubstituted tetrahydrofuran ring, where each R independently represents a hydrocarbyl group having from 1 to 20 carbon atoms and where each R″ independently represents a methyl group, a hydroxymethyl group, the product of an aldol condensation reaction or an alkoxymethyl group of the general formula (II): (II) —CH2-O—R′ where each R′ independently represents a hydrocarbyl group having from 1 to 20 carbon atoms, the process including the step of reacting a 5-(alkoxymethyl)furfural of the general formula (III) or a 2,5-bis(dialkoxymethyl)furan of the general formula (IV) under hydrogenation conditions: (III) R′—O—CH2-F—CH═O (IV) R′—O—CH2-F—CH2-O—R″ to form said ring-hydrogenated alkyl furfuryl ether of the general formula (I) or a mixture of said ethers wherein F represents a 2,5-disubstituted furan ring, and R′, and R″ have the definitions as described above.
Abstract:
A process includes the following steps: a) converting a solid material containing hemicellulose, cellulose and lignin, by: (i) hydrolyzing at least part of the hemicellulose of the solid material with a first aqueous hydrochloric acid solution, yielding a remaining solid material and a hydrochloric acid- containing, aqueous, first hydrolysate product solution; (ii) hydrolyzing at least part of the cellulose of the remaining solid material with a second aqueous hydrochloric acid solution, yielding a residue and a hydrochloric acid-containing, aqueous, second hydrolysate product solution; (b) forwarding to step (c) a, hydrochloric acid-containing, aqueous intermediate product solution comprising: a part of or the whole of the hydrochloric acid-containing, aqueous first and/or second hydrolysate product solution of step (a); and (c) heating at least part of the hydrochloric acid-containing, aqueous intermediate product solution to yield a product solution containing 5-(chloromethyl)furfural, and extracting the 5-(chloromethyl)furfural from the product solution into an extraction solvent.