Abstract:
Methods and apparatus optimize settings of a wireless communication network via an abstractor. The abstractor receives an event sent by the wireless communication network. The abstractor receives one or more proposed settings from one or more optimizers of the wireless communication network. The abstractor transmits one or more predicted values to the one or more optimizers. The predicted values predict the effect that the one or more proposed settings will have on the wireless communication network.
Abstract:
Fast mobile device authentication can be achieved during inter-domain handovers between administrative domains operating under a federated service agreement using pseudonym identifications (PID). Specifically, the mobile device may derive a PID when obtaining authentication in a first wireless network, and then use the PID to obtain fast authentication in a second wireless network. The PID may be generated during an Elliptic curve Diffie-Hellman (ECDH) authentication procedure using public keys associated with the mobile device and the first wireless network. The PID (or a derivative thereof) may then be provided to an authentication server in a second wireless network for validation. The PID may be validated by the second authentication server via online or offline validation procedures. The PID can also be used as an electronic coupon for accessing the second network.
Abstract:
Base stations (BSs) can remove inter-BS interference components from received uplink signals using downlink information communicated over a backhaul network. The downlink information is associated with downlink transmissions of neighboring base stations, and is used to remove the inter-BS interference in accordance with interference cancellation techniques, e.g., signal interference cancellation (SIC), etc. The downlink information includes information associated with downlink transmission of the interfering BSs, such as information bits (e.g., data), parity information, control information, modulation and coding scheme (MCS) parameters, forward error correction (FEC) parameters, and other information. Additionally, inter-BS interference can be suppressed using channel information of interference channels using interference suppression techniques, e.g., interference rejection combining (IRC), etc.
Abstract:
Interference costs on virtual radio interfaces can be modeled as a function of loading in a wireless network to estimate changes in spectral efficiency and/or resource availability that would result from a provisioning decision. In one example, this modeling is achieved through cost functions that are developed from historical and/or simulated resource cost data corresponding to the wireless network. The cost data may include interference data, spectral efficiency data, and/or loading data for various links over a common period of time (e.g., a month, a year, etc.), and may be analyzed and/or consolidated to obtain correlations between interference costs and loading on the various links in the network. As an example, a cost function may specify an interference cost on one virtual link as a function of loading on one or more neighboring virtual links.
Abstract:
Predicting mobile station migration between geographical locations of a wireless network can be achieved using a migration probability database. The database can be generated based on statistical information relating to the wireless network, such as historical migration patterns and associated mobility information (e.g., velocities, bin location, etc.). The migration probability database consolidates the statistical information into mobility prediction functions for estimating migration probabilities/trajectories based on dynamically reported mobility parameters. By example, mobility prediction functions can compute a likelihood that a mobile station will migrate between geographic regions based on a velocity of the mobile station. Accurate mobility prediction may improve resource provisioning efficiency during admission control and path selection, and can also be used to dynamically adjust handover margins.
Abstract:
System and method embodiments are provided for provisioning a quality of cellular user experience (QoE) or quality of service (QoS) specified device in a wireless local area network (LAN). The embodiments enable a QoE or QoS specified by a service agreement for a device to be maintained during periods when the device is transmitting data to and receiving data from the wireless LAN (e.g., a WiFi hotspot). In an embodiment, a method includes determining that at least one QoS-sensitive device is communicating with a wireless LAN access point (AP), reserving a contention free period (CFP) in a superframe for the at least one QoS-sensitive device to communicate with the AP, and allocating a contention period (CP) in the superframe for non-QoS-sensitive devices to communicate with the AP, wherein the non-QoS-sensitive devices are prohibited from transmitting during the CFP.
Abstract:
Spoofed radio control signaling instructions can be used to dynamically adapt management of the radio interface by radio control processors. More specifically, spoofed radio control signaling can be communicated to an accelerator application instantiated on a device-side of a radio control processor. The accelerator application can pre-process the spoofed radio control signaling before forwarding the instructions to a generic radio control processor. In one example, the generic radio control processor has a universal configuration that is capable of being adapted to different telecommunication protocols based on the spoofed radio control signaling. In another example, the spoofed radio control channel signaling is translated into control instructions at the accelerator application, which are forwarded to the generic radio control processor. The control instructions govern processing of downlink data channel transmissions and/or specify parameters of uplink transmissions.
Abstract:
An embodiment method includes receiving service parameters for a service and locating logical network nodes for a service-specific data plane logical topology at respective physical network nodes among a plurality of physical network nodes according to the service parameters, a service-level topology, and a physical infrastructure of the plurality of physical network nodes. The method also includes defining connections among the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure, and defining respective connections for a plurality of UEs to at least one of the logical network nodes according to the service parameters, the service-level topology, and the physical infrastructure. The method further includes defining respective functionalities for the logical network nodes.
Abstract:
Embodiments are provided for a location-based network discovery and connection establishment, which take advantage of location/positioning technology of user equipment (UE) and resolve issues above of the blind search approaches. The location-based network discovery and connection establishment schemes use UE location information and a network access MAP to speed up network discovery, and remove the need for continuous search and measurement by the UE. The schemes also reduce the search space. A wireless network access map (MAP) is provided to the UE. The UE uses the MAP information with UE current location information to reduce the search space and speed up network discovery and radio connection establishment with the network. Network operators can use this network access MAP to control the network access and manage the network load distribution. The network access MAP can be customized for each UE.
Abstract:
Embodiments are provided for assessing radio resource requirements using virtual bin virtualization. An embodiment method includes receiving a service request from a user equipment (UE) in a geographical bin. Resource requirements are then obtained, from a lookup table (LUT), for a serving radio node and neighbor radio nodes associated with the geographic bin of the UE. The LUT comprises a plurality of entries that map combinations of path losses of wireless links for the serving radio node and neighbor radio nodes to corresponding combinations of resource requirements. The entries of the path losses further include one or more service specific and network node parameters for the serving radio nodes and neighbor radio nodes, which are also mapped to the resource requirements. The obtained resource requirements are then assessed, including deciding whether to serve the UE according to the resource requirements and to resource availability.