Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
A communication system includes a router transceiver unit and a bandwidth module. The router transceiver unit includes a network adapter module and a signal modulator module. The network adapter module is configured to receive high bandwidth network data from one or more data sources disposed on board a vehicle. The signal modulator module is configured for electrical connection to a wired connection, and to convert the high bandwidth network data into modulated network data in a form suitable for transmission over the wired connection. The bandwidth module is configured to allocate different portions of a data communication bandwidth of the wired connection to the modulated network data. The allocation is based on categories representing at least one of the one or more data sources or contents of the high bandwidth network data.
Abstract:
An inspection management system is provided. The inspection management system includes an inspection data provider that receives inspection data relating to an inspector, one or more devices used to complete an inspection, one or more assets associated with an inspection, an inspection plan, etc. A display of the inspection management system presents one or more graphical user interfaces based upon the inspection data. The graphical user interfaces may facilitate inspection planning, execution, preparation, and/or real-time inspection monitoring.
Abstract:
An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
Abstract:
Systems and methods described herein relate to indicating a repair to perform on an asset based on historic data related to a repair on the asset and/or sensor data associated with the asset. An evaluate component aggregates information related an asset such as a repair performed or data from a sensor. A repair evaluation component indicates a repair to perform on the asset based on at least one of the data from the sensor or the information related to the asset. By utilizing asset-specific information and historical data, repair schedules for assets can be more accurate and thereby reducing untimely repairs.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.
Abstract:
An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
Abstract:
A method comprises receiving an alarm state from one or more inspection systems that inspects one or more components of a vehicle system. The method then identifies operational parameters of the vehicle system. The operational parameters represent at least one of a current location of the vehicle system, a current terrain over which the vehicle system is currently travelling, an upcoming terrain that the vehicle system is travelling toward, a current moving speed of the vehicle system, a position of one or more controls of the vehicle system, a state of a brake of the vehicle system or an identification of one or more vehicle units in the vehicle system. The method then selects and implements a mitigating action to implement from plural different mitigating actions based on the alarm state and the one or more parameters of the vehicle.
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.