Abstract:
A method of preparing a mold to form an article is provided. In one embodiment, the method includes preparing a quantity of fluid including lightweight oil, submerging the mold in the quantity of fluid such that the fluid at least partially enters internal cavities of the mold, and filling asperities defined in walls of the mold. The filling includes creating a negative pressure in the mold while submerged in the quantity of fluid, and removing substantially all air from the internal cavities.
Abstract:
An electrochemical cell is provided that includes a cathode chamber including a cathode material and an ion sequestering material, an anode chamber including a molten alkali metal material and a separator disposed in an ionic conductivity path between the cathode chamber and the anode chamber. The electrochemical cell demonstrates a reduced increase in discharge resistance.
Abstract:
A method of maintaining the performance level of an electrochemical cell is described. The cell usually includes a negative electrode that includes an alkali metal; a positive electrode that includes at least one transition metal halide; a molten salt electrolyte based on an alkali metal haloaluminate; and a sodium ion-conducting solid electrolyte partitioning the positive electrode from the negative electrode. The method is based on a treatment regimen that includes the step of applying a series of electrical cycles to the cell, wherein the series includes at least one deep discharge of the cell. Each discharge of the cell is usually followed by recharging the cell to its available capacity.
Abstract:
Compositions and methods useful for forming ceramic articles, such as, for instance, cores and shells for investment casting, are provided. The composition comprises a liquid that comprises a siloxane species; a plurality of particles, comprising a ceramic material, disposed within the liquid; a catalyst material disposed within the liquid; and a pore-forming agent disposed within the liquid. The pore-forming agent comprises a silicon-bearing agent that is substantially inert with respect to the liquid, and has an average molecular weight less than about 1300 grams per mole. The method comprises disposing any of the compositions described above in a desired shape; curing the siloxane species, and volatilizing the pore-forming agent to form a porous green body.
Abstract:
The present disclosure generally relates to a ceramic core comprising predominantly mullite, which is derived from a precursor comprising alumina particles and siloxane binders. Free silica is present in the ceramic body, but is largely unavailable for reaction with metal alloys used in investment casting. Methods of making cast metal articles are also disclosed.
Abstract:
A method of maintaining the performance level of an electrochemical cell is described. The cell usually includes a negative electrode that includes an alkali metal; a positive electrode that includes at least one transition metal halide; a molten salt electrolyte based on an alkali metal haloaluminate; and a sodium ion-conducting solid electrolyte partitioning the positive electrode from the negative electrode. The method is based on a treatment regimen that includes the step of applying a series of electrical cycles to the cell, wherein the series includes at least one deep discharge of the cell. Each discharge of the cell is usually followed by recharging the cell to its available capacity.
Abstract:
A method of extracting hydrocarbons from a wellbore formed in a subterranean rock formation. The wellbore includes at least one fracture extending therefrom. The method includes forming a particle-free treatment fluid that includes an uncured, particle-free proppant material, and injecting the particle-free treatment fluid into the wellbore and towards the at least one fracture. The uncured, particle-free proppant material is configured to cure in-situ when positioned within the at least one fracture.
Abstract:
A method of preparing a mold to form an article is provided. In one embodiment, the method includes preparing a quantity of fluid including lightweight oil, submerging the mold in the quantity of fluid such that the fluid at least partially enters internal cavities of the mold, and filling asperities defined in walls of the mold. The filling includes creating a negative pressure in the mold while submerged in the quantity of fluid, and removing substantially all air from the internal cavities.