Abstract:
A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.
Abstract:
A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.
Abstract:
A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.
Abstract:
A method of inspecting a component using an image inspection controller that includes a processor communicatively coupled to a memory includes classifying each sample image in a first database as a first sample or a second sample using a classification module, extracting at least one class generic feature from each first sample to generate a plurality of class generic features, and extracting at least one class specific feature from each second sample to generate a plurality of class specific features. The method further includes combining the class generic features and the class specific features to generate a plurality of supplemental images. The method further includes storing the sample images and the supplemental images in a second database, classifying each sample image and each supplemental image, capturing at least one image of the component using a camera, and identifying at least one feature of the component in the at least one image of the component using the classification module.
Abstract:
A modular method of manufacturing a waveguide is disclosed. The method includes positioning a mold insert including a plurality of mold prototypes, along at least one side wall of a molding equipment such that micro-optic structures of each mold prototype in the plurality of mold prototypes, faces a mold cavity. Each mold prototype extends along a length of the mold insert and the plurality of mold prototypes is disposed adjacent one another along a height of the mold insert. The method further includes feeding a material into the mold cavity for molding the material in the mold cavity to generate waveguide including a major surface having an optical pattern, where the optical pattern includes a plurality of elongated facets. Each of the plurality of elongated facets extends into the major surface and along a length of the waveguide. Further, the optical pattern extends along a height of the waveguide.
Abstract:
Waveguides having improved illumination distribution and output luminance variation and lighting systems utilizing such waveguides are disclosed. The lighting systems generally include a light source which is optically coupled to a waveguide to distribute the light. The waveguides include one or more headlighting reduction regions and one or more output intensity shaping regions that work together to improve the distribution of light and reduce the effects of headlighting. The headlighting reduction regions may be integrated with the output intensity shaping region or may be an independent section.
Abstract:
A method of inspecting a component using an image inspection controller that includes a processor communicatively coupled to a memory includes classifying each sample image in a first database as a first sample or a second sample using a classification module, extracting at least one class generic feature from each first sample to generate a plurality of class generic features, and extracting at least one class specific feature from each second sample to generate a plurality of class specific features. The method further includes combining the class generic features and the class specific features to generate a plurality of supplemental images. The method further includes storing the sample images and the supplemental images in a second database, classifying each sample image and each supplemental image, capturing at least one image of the component using a camera, and identifying at least one feature of the component in the at least one image of the component using the classification module.
Abstract:
A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.