Abstract:
The present subject matter is directed to a method for managing and/or categorizing trip faults of an electrical component, such as power converter, of a wind turbine. The method includes receiving, via a local controller of the wind turbine, an indication of at least one trip fault in the electrical component of the wind turbine. The method also includes determining, via the local controller, a unique identifier for the trip fault. More specifically, the unique identifier contains information regarding a type of the trip fault and at least one of an origin or a cause, of the trip fault. Further, the method includes sending, via the local controller, the unique identifier to a supervisory controller of the wind turbine. Thus, the method also includes implementing, via the supervisory controller, a control action based on the unique identifier.
Abstract:
The present subject matter is directed to a method for managing and/or categorizing trip faults of an electrical component, such as power converter, of a wind turbine. The method includes receiving, via a local controller of the wind turbine, an indication of at least one trip fault in the electrical component of the wind turbine. The method also includes determining, via the local controller, a unique identifier for the trip fault. More specifically, the unique identifier contains information regarding a type of the trip fault and at least one of an origin or a cause, of the trip fault. Further, the method includes sending, via the local controller, the unique identifier to a supervisory controller of the wind turbine. Thus, the method also includes implementing, via the supervisory controller, a control action based on the unique identifier.
Abstract:
A system for commissioning a wind turbine is provided. The system includes a test wind turbine, one or more additional wind turbines coupled to the test wind turbine, and a control system. The control system includes a first control module for controlling the one or more additional wind turbines to act as a power source and provide power to the test wind turbine. The control system also includes a second control module for controlling the one or more additional wind turbines to act as a load for dissipating test power generated by the test wind turbine.
Abstract:
A system for wind power dispatch that includes a wind farm controller for controlling operation of wind turbines in a wind farm and regulating real time power output of the wind farm. The system also includes a wind power dispatch management system for computing a difference between a predefined power output and the real time power output and dispatching a transient wind farm reserve to reduce the difference or, if the transient wind farm reserve is insufficient to reduce the difference, additionally or alternatively dispatching a storage reserve to reduce the difference.
Abstract:
A system for wind power dispatch that includes a wind farm controller for controlling operation of wind turbines in a wind farm and regulating real time power output of the wind farm. The system also includes a wind power dispatch management system for computing a difference between a predefined power output and the real time power output and dispatching a transient wind farm reserve to reduce the difference or, if the transient wind farm reserve is insufficient to reduce the difference, additionally or alternatively dispatching a storage reserve to reduce the difference.
Abstract:
A control system is provided. The control system includes a turbine controller that is configured to generate at least a first signal that is representative of pitch control commands for a plurality of turbine blades and a second signal that is representative of the pitch control commands for the turbine blades. A first pitch controller is coupled to the turbine controller, wherein the first pitch controller is configured to receive the first signal and to implement the pitch control commands for each of the turbine blades in response to receiving the first signal. A second pitch controller is coupled to the turbine controller and to the first pitch controller, wherein the second pitch controller is configured to receive the second signal and to implement the pitch control commands to each of the turbine blades when the first pitch controller is unable to implement the pitch control commands.
Abstract:
A control system is provided. The control system includes a turbine controller that is configured to generate at least a first signal that is representative of pitch control commands for a plurality of turbine blades and a second signal that is representative of the pitch control commands for the turbine blades. A first pitch controller is coupled to the turbine controller, wherein the first pitch controller is configured to receive the first signal and to implement the pitch control commands for each of the turbine blades in response to receiving the first signal. A second pitch controller is coupled to the turbine controller and to the first pitch controller, wherein the second pitch controller is configured to receive the second signal and to implement the pitch control commands to each of the turbine blades when the first pitch controller is unable to implement the pitch control commands.