Abstract:
A system includes a bleed system that directs a bleed flow form a high pressure region to a low pressure region. The bleed system includes a bleed conduit that includes an inlet coupled to the high pressure region. The bleed system also includes an outlet that provides the bleed flow into the low pressure region. The bleed conduit it slideably coupled to a housing that defines the low pressure region.
Abstract:
A system includes a bleed system configured to direct a bleed flow from a compressor section to an exhaust section of a gas turbine engine. The bleed system includes a first bleed conduit section configured to couple to the compressor section, a second bleed conduit section configured to couple to the exhaust section, and a first rotatable joint coupling together adjacent conduits of the first and second bleed conduit sections. The second bleed conduit section has components configured to rotate between a plurality of configurations relative to the first bleed conduit section and the compressor section via the first rotatable joint. The plurality of orientations corresponds to a plurality of exhaust outlet orientations of the exhaust section, and the components of the second bleed conduit section are the same in each orientation.
Abstract:
A system includes an intercooler configured to flow a working fluid and compressed air of a gas turbine engine through the intercooler to exchange heat between the working fluid and the compressed air. The system also includes a multi-effect distillation system configured to flow the working fluid and a mixture to exchange heat between the working fluid and the mixture to enable distillation of the mixture.
Abstract:
A turbine ventilation system includes a controller that is coupled to an actuator that is coupled to a vane that is disposed across an intake port between a gas turbine enclosure and the turbine ventilation system. The controller can cause the actuator to change a position of the vane to alter an air flow from the turbine ventilation system into the gas turbine enclosure based upon feedback from one or more sensors disposed within the gas turbine enclosure.
Abstract:
A system includes an intercooler configured to flow a working fluid and compressed air of a gas turbine engine through the intercooler to exchange heat between the working fluid and the compressed air. The system also includes a multi-effect distillation system configured to flow the working fluid and a mixture to exchange heat between the working fluid and the mixture to enable distillation of the mixture.
Abstract:
A system includes a bleed system configured to direct a bleed flow from a compressor section to an exhaust section of a gas turbine engine. The bleed system includes a first bleed conduit section configured to couple to the compressor section, a second bleed conduit section configured to couple to the exhaust section, and a first rotatable joint coupling together adjacent conduits of the first and second bleed conduit sections. The second bleed conduit section has components configured to rotate between a plurality of configurations relative to the first bleed conduit section and the compressor section via the first rotatable joint. The plurality of orientations corresponds to a plurality of exhaust outlet orientations of the exhaust section, and the components of the second bleed conduit section are the same in each orientation.
Abstract:
A system including an engine and a heat exchanger coupled to the engine is provided. The engine includes an engine fluid and at least one of a compressor section configured to compress a gas, a lubricant path configured to circulate a lubricant, or a coolant path configured to circulate a coolant. The engine fluid comprises at least one of the gas, the lubricant, or the coolant, and the engine fluid is a source of heat derived from one or more operations of the engine. The heat exchanger is configured to receive the engine fluid from the engine and exchange heat between the engine fluid and a working fluid to produce a heated working fluid and a cooled engine fluid, and the heat exchanger is configured to export the heated working fluid to a steam system.
Abstract:
A turbine ventilation system includes a controller that is coupled to an actuator that is coupled to a vane that is disposed across an intake port between a gas turbine enclosure and the turbine ventilation system. The controller can cause the actuator to change a position of the vane to alter an air flow from the turbine ventilation system into the gas turbine enclosure based upon feedback from one or more sensors disposed within the gas turbine enclosure.
Abstract:
A system including an engine and a heat exchanger coupled to the engine is provided. The engine includes an engine fluid and at least one of a compressor section configured to compress a gas, a lubricant path configured to circulate a lubricant, or a coolant path configured to circulate a coolant. The engine fluid comprises at least one of the gas, the lubricant, or the coolant, and the engine fluid is a source of heat derived from one or more operations of the engine. The heat exchanger is configured to receive the engine fluid from the engine and exchange heat between the engine fluid and a working fluid to produce a heated working fluid and a cooled engine fluid, and the heat exchanger is configured to export the heated working fluid to a steam system.
Abstract:
A system includes a gas turbine system having a heat recovery steam generator (HRSG), a compressor, an intercooler, and a steam turbine. The HRSG is configured to receive an exhaust gas, heat a first working fluid with the exhaust gas, and route the first working fluid to the steam turbine, where the steam turbine is configured to extract energy from the first working fluid, and where the intercooler is configured to receive a compressed air from the compressor of the gas turbine engine and to cool the compressed air to a first controllable temperature determined by engine controls with a second working fluid having a second controllable temperature suitable for cooling the compressed air to the first controllable temperature determined by the engine controls. The system also includes a first feed heater of a distillation system, where the first feed heater is configured to receive the mixture and the second working fluid such that the second working fluid sinks heat to the mixture. The system also includes a first-effect vessel of the distillation system. The first-effect vessel is configured to receive the mixture from the first feed heater and to receive the first working fluid from the steam turbine, such that the first working fluid sinks heat to the mixture.