Abstract:
A centrifugal separator for removing particles from a fluid stream includes an angular velocity increaser configured to increase the angular velocity of a fluid stream, a flow splitter configured to split the fluid stream to form a concentrated-particle stream and a reduced-particle stream, and an exit conduit configured to receive the reduced-particle stream. An inducer assembly for a turbine engine includes an inducer with a flow passage having an inducer inlet and an inducer outlet in fluid communication with a turbine section of the engine, and a particle separator, which includes a particle concentrator that receives a compressed stream from a compressor section of the engine and a flow splitter. A turbine engine includes a cooling air flow circuit which supplies a fluid stream to a turbine section of the engine for cooling, a particle separator located within the cooling air flow circuit, and an inducer forming a portion of the cooling air flow circuit in fluid communication with the particle separator. A method of cooling a rotating blade of a turbine engine having an inducer includes directing a cooling fluid stream from a portion of turbine engine toward the rotating blade, separating particles from the cooling fluid stream by passing the cooling fluid stream through a inertial separator, accelerating a reduced-particle stream emitted from the inertial separator to the speed of the rotating blade, and orienting the reduced-particle stream by emitting the reduced-particle stream from the inertial separator into a cooling passage in the inducer.
Abstract:
A shroud assembly for a turbine engine includes a shroud having a front side confronting the blades of a turbine and a back side opposite the front side, a hanger configured to couple the shroud to with casing of the turbine, a cooling conduit extending through the hanger to supply a cooling fluid stream to the back side of the shroud, and a particle separator having a through passage forming part of the cooling conduit and a scavenge conduit branching from the through passage.
Abstract:
A turbine engine having a bypass fluid conduit coupled to the turbine section includes at least one particle separator located within the bypass fluid conduit to separate particles from a bypass fluid stream prior to the bypass stream reaching the turbine section for cooling. A centrifugal separator for removing particles from a fluid stream includes an angular velocity increaser, a particle outlet, an angular velocity decreaser downstream of the angular velocity increaser, and a bend provided between the angular velocity increaser and the angular velocity decreaser.
Abstract:
A turbine engine having a compressor section, a combustor section, a turbine section, and a rotatable drive shaft that couples a portion of the turbine section and a portion of the compressor section. A bypass conduit couples the compressor section to the turbine section while bypassing at least the combustion section. At least one particle separator is located in the turbine engine having a separator inlet that receives a bypass stream, a separator outlet that receives a reduced-particle stream flows, and a particle outlet that receives a concentrated-particle stream comprising separated particles. A conduit, fluidly coupled to the particle outlet, extends through an interior of at least one stationary vane.
Abstract:
A turbine engine having an inducer assembly. The inducer assembly includes a centrifugal separator fluidly coupled to an inducer with an inducer inlet and an inducer outlet. The centrifugal separator includes a body, an angular velocity increaser to form a concentrated-particle stream and a reduced-particle stream, a flow splitter, and an exit conduit fluidly coupled to the body to receive the reduced-particle stream and define a separator outlet.
Abstract:
A separator assembly for removing entrained particles from a fluid stream passing through a gas turbine engine includes a first particle separator for separating the fluid stream into a reduced-particle stream and a particle-laden stream, and emitting the particle-laden stream through a scavenge outlet. Another particle remover is fluidly coupled to the scavenge outlet to remove more particles from the air stream.
Abstract:
A power plant may include a magnetohydrodynamic (MHD) generator having an MHD exhaust that is cooled using a compressor exit flow to a temperature at which the MHD exhaust can be fed to at least one stage of a gas turbine. The heated compressor exit flow may be used to feed a combustor for the MHD generator. In an alternative embodiment, the gas turbine exhaust may be used in a heat recovery steam generator for a steam turbine system, and then fed back to a compressor for the combustor to the MHD generator. In another embodiment, a power plant may include a compressor exit flow feeding a combustor for an MHD generator and an MHD exhaust may be mixed with a compressor pre-exit, extraction flow for feeding to at least one stage of a gas turbine.
Abstract:
A shroud assembly for a turbine engine includes a shroud having a front side confronting the blades of a turbine and a back side opposite the front side, a hanger configured to couple the shroud to with casing of the turbine, a cooling conduit extending through the hanger to supply a cooling fluid stream to the back side of the shroud, and a particle separator having a through passage forming part of the cooling conduit and a scavenge conduit branching from the through passage.