Abstract:
Three conjugation methods for use with the capsular saccharide of Streptococcus agalactiae. In the first method, reductive amination of oxidized sialic acid residue side chains is used, but the aldehyde groups are first aminated, and then the amine is coupled to a carrier via a linker. In the second method, sialic acid residues and/or N-acetyl-glucosamine residues are de-N-acetylated to give amine groups, and the amine groups are coupled to a carrier protein via a linker. In the third method, linkage is via galactose residues in the capsular saccharide rather than sialic acid residues, which can conveniently be achieved using galactose oxidase.
Abstract:
The invention relates to bacterial mutants, particularly from Streptococcus agalactiae, that secrete capsular polysaccharide and methods of purifying the secreted bacterial capsular polysaccharides from culture medium. The extracted polysaccharides are useful for producing vaccines comprising the polysaccharides alone or conjugated to proteins.
Abstract:
The invention provides a process for preparing a conjugate of a S. aureus type 8 capsular polysaccharide and a carrier molecule, comprising the steps of: (a) depolymerising the capsular polysaccharide, to give a polysaccharide fragment; (b) oxidising the fragment in order to introduce an aldehyde group into at least one saccharide residue in the fragment, to give an oxidised saccharide residue; and (c) coupling the oxidised saccharide residue to a carrier molecule via the aldehyde group, thereby giving the conjugate. The coupling in step (c) may be direct, or may be via a linker molecule. The invention also provides a conjugate obtained or obtainable by this process.
Abstract:
Three conjugation methods for use with the capsular saccharide of Streptococcus agalactiae. In the first method, reductive amination of oxidized sialic acid residue side chains is used, but the aldehyde groups are first aminated, and then the amine is coupled to a carrier via a linker. In the second method, sialic acid residues and/or N-acetyl-glucosamine residues are de-N-acetylated to give amine groups, and the amine groups are coupled to a carrier protein via a linker. In the third method, linkage is via galactose residues in the capsular saccharide rather than sialic acid residues, which can conveniently be achieved using galactose oxidase.
Abstract:
Methods for detecting in a sample the presence of an antibody to a conjugate of an antigen associated with a first carrier by a first association are disclosed. The method comprises contacting a conjugate of the antigen associated with a second carrier by a second association with said sample under conditions that allow binding of the antibody to the antigen; and introducing an agent to detect the presence of the antibody bound to said antigen. The first association and the second association are covalent associations and the first association is different from the second association. Also provided are kits, multiwell plates and conjugates that are useful in the method and further uses of the method. Also provided is a method of releasing a batch of a vaccine comprising a conjugate of an antigen associated with a first carrier by a first association and antibodies useful in this method.
Abstract:
The invention provides a process for preparing a conjugate of a S. aureus type 5 or type 8 capsular polysaccharide and a carrier molecule, comprising the steps of: (a) depolymerising the capsular polysaccharide, to give a polysaccharide fragment; (b) oxidising the fragment in order to introduce an aldehyde group into at least one saccharide residue in the fragment, to give an oxidised saccharide residue; and (c) coupling the oxidised saccharide residue to a carrier molecule via the aldehyde group, thereby giving the conjugate. The coupling in step (c) may be direct, or may be via a linker molecule. The invention also provides a conjugate obtained or obtainable by this process.
Abstract:
A purification method for the capsular polysaccharide of type II GBS in which the capsular polysaccharide is filtered using a membrane with a cut-off of less than 30 kDa.
Abstract:
The invention provides a method for releasing capsular polysaccharide from S. aureus type 5 or type 8 cells, comprising the step of treating the cells with acid. The invention further provides a process for purifying capsular polysaccharide from S. aureus type 5 or type 8 cells comprising this method. Other processing steps may be included in the process, such as enzymatic treatment, e.g. to remove nucleic acid, protein and/or peptidoglycan contaminants; diafiltration, e.g. to remove low molecular weight contaminants; anion exchange chromatography, e.g. to remove residual protein; and concentration.