摘要:
The present invention presents a method for manufacturing a negative electrode of a solid oxide cell in a three-dimensional structure by using a pressurization process. In addition, the present invention proposes a structure in which the entire interface of a solid oxide cell is manufactured on the manufactured three-dimensional negative electrode substrate, through various deposition methods, in a three-dimensional structure so as to maximize a reaction area.
摘要:
Disclosed is a method for infiltrating a porous structure with a precursor solution by means of humidification. The infiltration method with a precursor solution using moisture control comprises the steps of: (S1) providing a substrate having porous structures deposited thereon; (S2) depositing, by electrospraying, a precursor solution on the substrate having porous structures deposited thereon; (S3) humidifying the porous structures having the precursor solution deposited thereon; and (S4) sintering the humidified porous structures.
摘要:
Disclosed is a method of manufacturing a solid oxide fuel cell using a calendering process. The method includes preparing a stack including an anode support layer (ASL) and an anode functional layer (AFL), calendering the stack to obtain an anode, stacking an electrolyte layer on the anode to obtain an assembly, calendering the assembly to obtain an electrolyte substrate, sintering the electrolyte substrate, and forming a cathode on the electrolyte layer of the electrolyte substrate.
摘要:
Provided is an interlayer for a thin electrolyte solid oxide cell, a thin electrolyte solid oxide cell including the same, and a method of forming the same. In various embodiments, functional elements (a fuel electrode, an electrolyte and a cathode) of the solid oxide cell are formed by means of a thin film process, and thus a nanostructure of the catalyst is not seriously lost due to agglomeration, different from a powder process. Thus, it is possible to accomplish catalyst activation according to a high specific surface area.
摘要:
Provided is a solid oxide cell including a fuel electrode layer, electrolyte layer and an air electrode layer, wherein a diffusion barrier layer is provided between the air electrode layer and the electrolyte layer, the diffusion barrier layer includes: a first diffusion barrier layer formed on the electrolyte layer and including a sintered ceria-based metal oxide containing no sintering aid; and a second diffusion barrier layer formed on the first diffusion barrier layer and including a sintered product of a ceria-based metal oxide mixed with a sintering aid, the first diffusion barrier layer includes a sintered product of nanopowder and macropowder of a ceria-based metal oxide, and the first diffusion barrier layer and the second diffusion barrier layer are sintered at the same time. The diffusion barrier layer is densified, shows high interfacial binding force and prevents formation of a secondary phase derived from chemical reaction with the electrolyte.
摘要:
Provided is a method for manufacturing a sintered body for an electrolyte and an electrolyte for a fuel cell using the same. More particularly, the following disclosure relates to a method for preparing an electrolyte having a firm thin film layer by using a sintered body having controlled sintering characteristics, and application of the electrolyte to a solid oxide fuel cell. It is possible to control the sintering characteristics of a sintered body through a simple method, such as controlling the amounts of crude particles and nanoparticles. In addition, an electrode using the obtained sintered body having controlled sintering characteristics is effective for forming a firm thin film layer. Further, such an electrolyte having a firm thin film layer formed thereon inhibits combustion of fuel with oxygen when it is applied to a fuel cell, and thus shows significantly effective for improving the quality of a cell.
摘要:
The present disclosure relates to a nanocatalyst for an anode of a solid oxide fuel cell and a method for preparing the same. More particularly, the present disclosure relates to a nanocatalyst for an anode of a solid oxide fuel cell obtained by forming a ceramic nanocatalyst including a noble metal dispersed therein in an atomic unit and contained in an ionic state having an oxidation number other than 0 through an in situ infiltration process in the internal pores of a porous electrode, and to application of the nanocatalyst to a solid oxide fuel cell having significantly higher electrochemical characteristics as compared to the solid oxide fuel cells including the conventional nickel-based anode and oxide anode, and particularly showing excellent characteristics at an intermediate or low temperature of 600° C. or less.
摘要:
The present invention relates to a lithium-ion-conductive sulfide-based solid electrolyte which contains lithium (Li), sulfur (S), phosphorus (P), indium (In) and selenium (Se) and has a crystal structure of InSe and a method for preparing the same.
摘要:
In an embodiment of the present invention, a proton conductive oxide fuel cell comprising an electrode substrate, a proton conductive oxide electrolyte layer positioned on the electrode substrate, a proton conductive oxide reaction prevention layer positioned on the electrolyte layer, and a proton conductive oxide air electrode layer positioned on the reaction prevention layer, wherein the reaction prevention layer is composed of ABO3-δ structured perovskite proton conductive oxide, may be provided.
摘要:
Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.