Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device yield and/or reliability through bias temperature instability (BTI). One device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line controls access to each pass gate of a first number of cells; a word line driver electrically connected to each word line; and a control line configured to provide an operational write voltage or a first write voltage to each word line through the word line driver. By virtue of BTI, application of the first write voltage may lead to improved stability of data desired to be read from one or more cells of the device.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.
Abstract:
Method, apparatus, and system for improving semiconductor device writeability at row/bit level through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS, wherein the first array supply voltage and the second array supply voltage are greater than the operational array supply voltage. By virtue of BTI, application of the first array supply voltage may lead to improved writeability of one or more cells of the device.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device yield and/or reliability through bias temperature instability (BTI). One device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line controls access to each pass gate of a first number of cells; a word line driver electrically connected to each word line; a row decoder configured to authorize or deauthorize a write voltage to each word line through the word line driver, wherein the write voltage is selected from an operational write voltage or a first write voltage; and a control line configured to provide an operational write voltage or a first write voltage to each word line authorized by the row decoder, wherein the first write voltage is greater than an operational write voltage.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.
Abstract:
A method and an apparatus for identifying non-intrinsic defect bits from a population of failing bits for failure analysis to characterize the extrinsic failure mechanisms is provided. Embodiments include performing a failure mode test on a bank of a memory array at different low VDD; determining optimal bank size to observe plateaus of fail counts; determining fail counts of the bank at each different low VDD; determining a plateau of the fail counts; determining whether the plateau represents extrinsic bits of the bank; and submitting the extrinsic bits for root cause analysis.
Abstract:
Method, apparatus, and system for improving semiconductor device writeability at row/bit level through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS, wherein the first array supply voltage and the second array supply voltage are greater than the operational array supply voltage. By virtue of BTI, application of the first array supply voltage may lead to improved writeability of one or more cells of the device.
Abstract:
We disclose methods, apparatus, and systems for improving semiconductor device writeability through bias temperature instability. Such a device may comprise a plurality of cells of an array, wherein each of the cells comprises a pass gate and a latch; a plurality of word lines, wherein each word line comprises a supply voltage line (VCS) which supplies voltage to each latch of a first number of cells; an array VCS driver electrically connected to each VCS; and a control line configured to provide an operational array supply voltage, a first array supply voltage, or a second array supply voltage to each VCS through the array VCS driver.